BACK-TO-BACK DISTANCE MEASURING GAUGE

IMR Series

User’s manual

22, Logoisky tract, Minsk
220090, Republic of Belarus
tel/fax: +375 17 281 36 57
info@riftek.com
www.riftek.com

Certified according to ISO 9001:2008
Contents

1. Safety precautions and measurement conditions ... 3
2. Electromagnetic compatibility ... 3
3. Laser safety ... 3
4. General information ... 3
5. Basic data and performance characteristics ... 4
6. Example of item designation when ordering ... 4
7. Complete set to be supplied ... 4
8. Design .. 4
9. Operation principle .. 5
10. Working with the gauge .. 5
 10.1. Gauge turn-on ... 5
 10.2. Single measurement ... 5
 10.3. Measurement with averaging ... 5
 10.4. Gauge turn-out ... 6
11. Indication parameters setup ... 6
 11.1. Image brightness set-up .. 6
 11.2. Millimeters-Inches display set-up ... 6
12. Service operation modes ... 6
 12.1. Calibration conditions .. 6
 12.2. Get into operational modes ... 7
 12.3. Calibration of the sensor zero ... 7
13. Charging of built-in accumulator battery ... 8
14. Warranty policy .. 8
15. Distributors .. 8
16. Annex 1. RIFTEK’s measurement devices for railway transport .. 11
1. Safety precautions and measurement conditions

- The metering accuracy depends greatly on the wheel surface quality. Therefore it is necessary to carry out the check and presorting of the wheel surface flaws before measuring the diameter.
- Prior to place the gauge is a need to clean the wheels and rails parts that contact with gauge ball bearings and supports, of the mud.
- At arranging the gauge, do not allow hitting its supports on the wheel and rail
- It is necessary to inspect the gauge supports and laser sensors windows periodically and to cleanse them
- To save the battery power the display extinguishes if there were no buttons pressings for 60 seconds, at that only blinking dot is shown. Pressing any button just turns on the display and does not act in any other way in this case.

2. Electromagnetic compatibility

The gauge has been developed for use in industry and meets the requirements of the following standards:
- EN 61326-1:2006 Electrical Equipment for Measurement, Control, and Laboratory Use. EMC Requirements. General requirements.

3. Laser safety

The sensor mounted in the gauge makes use of an c.w. 660 nm wavelength semiconductor laser. Maximum output power is 1 mW. The sensor belong to the 2 laser safety class. The following warning label is placed on the gauge body:

The following safety measures should be taken while operating the sensor:
- Do not target laser beam to humans;
- Do not disassemble the sensor;
Avoid staring into the laser beam

4. General information

Electronic gauge is designed for measuring back-to-back distance of railway, metro and tram wheels in the course of checkup, examination, repair and formation of wheel sets. Measurements are made directly on rolling stock without wheel set roll-out.
5. Basic data and performance characteristics

<table>
<thead>
<tr>
<th>Name of parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range, mm</td>
<td>L±25 (L – nominal distance)</td>
</tr>
<tr>
<td>Measurement error, mm</td>
<td>±0.1</td>
</tr>
<tr>
<td>Indication discreteness</td>
<td>0.1mm, or 0.01 inch **</td>
</tr>
<tr>
<td>Display</td>
<td>build-in, LED</td>
</tr>
<tr>
<td>Operating temperature, ºC</td>
<td>-5…+40</td>
</tr>
<tr>
<td>Weigh, kg</td>
<td>1</td>
</tr>
<tr>
<td>Dimensions</td>
<td>figure 1</td>
</tr>
<tr>
<td>Power supply</td>
<td>rechargeable batteries 2xAAA, 1.2V</td>
</tr>
</tbody>
</table>

6. Example of item designation when ordering

IMR- D

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Nominal back-to-back distance, mm</td>
</tr>
</tbody>
</table>

Example: IMR-1590. Nominal back-to-back distance is equal 1590 mm.

7. Complete set to be supplied

<table>
<thead>
<tr>
<th>Name</th>
<th>Quantity</th>
<th>Weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>The measuring gauge IMR series</td>
<td>1 piece</td>
<td>1</td>
</tr>
<tr>
<td>Charger</td>
<td>1 piece</td>
<td>0,2</td>
</tr>
<tr>
<td>Manual</td>
<td>1 piece</td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>1 piece</td>
<td></td>
</tr>
<tr>
<td>Calibration tools (option)</td>
<td>on request</td>
<td></td>
</tr>
</tbody>
</table>

8. Design.

Electronic gauge contains ball support to place the gauge onto the internal surface of the wheel, two side supports to base the gauge to the wheel flange, two bottom supports or the rails and contactless laser sensor.

There are a digital numeric display and control buttons on the front panel of the gauge. “Charge” connector for charging device connection is situated on the top panel of the gauge.

Figure 1
9. Operation principle

The method of measurement is based on direct measurement the distance by contactless laser sensor.

10. Working with the gauge

10.1. Gauge turn-on.

Press Red button to turn on the power. The display shows “ErrP” message if the accumulator battery voltage became lower then the control level. In this case the short-term work is possible after pressing any key.

10.2. Single measurement.

To perform measurement, it is necessary to:

- turn the power on (press Red button). The display shows “- - - - -”;
- place the gauge on the rails between the wheels;
- make sure that the ball support is tight against the surface of the wheel and side supports are adjacent to the flanges of the wheels;
- press Green button.
- in a 1 second the display will show the value of the back-to-back distance.

For viewing the result of measurement with indication discreteness of 0.01mm (it is accessible only in a mode of direct indication) it is necessary to press Blue button, thus displayed result will be shifted to the left on one digit. Next pressing Blue button will lead to return of indication to a starting position:

10.3. Measurement with averaging

The program of the back-to-back distance calculation contains an averaging algorithm that allows eliminating the surface defects influence on the distance measuring result. All the results of metering, performed after the Red button pressing, are averaged. The measurement is meant to be Green button pressing.

To carry out measurements it is necessary to

- turn the power on (press Red button). The display shows “- - - - -”;
- place the gauge between the wheels
- make sure the ball support is tight against the surface of the wheel and side supports are adjacent to the flange of the wheels;
- press Green button;
- display shows the value of pressing counter “n x”, where x – quantity of averaged values;
- in a 1 second display shows an average value over the set of metering (over the quantity of Green button pressings)
- reinstall the gauge and repeat the measuring.

(The total quantity of measurements averaged in this way can run up to 9999.)

- Press Red button to reset averaging result at switching to another wheel.

For viewing the result of measurement with indication discreteness 0.01mm (it is accessible only in a mode of direct indication) it is necessary to press Blue button, thus displayed result will be shifted to the left on one digit. Next pressing Blue button will lead to return of indication to a starting position.
10.4. Gauge turn-out

The gauge turn-out occurs automatically. The display extinguishes if there were no buttons pressings for 60 seconds, at that only blinking dot is shown. If there were no button pressings for 4 more minutes, the gauge is turned out completely. You can turn the gauge off by long pressing Red button (more then 3 sec.).

11. Indication parameters setup

11.1. Image brightness set-up.

To change the display brightness it is necessary to:
- turn the power on (press Red button);;
- press Blue button and keep it pressed for more than three seconds;
- display will show “brt X”;
- choose the necessary brightness value by Green button pressings;
- to save the changed parameters press Red button the display shows “SAUE” message, press the Green button to confirm saving and Red to cancel saving of the changed parameters;

At brightness choosing one should take into account that increased brightness enhances power consumption and decreases the period till battery recharge moment.

11.2. Millimeters-Inches display set-up

To change the mode it is necessary to:
- turn the power on (press Red button);;
- press Blue button and keep it pressed for more than three seconds;
- display will show “brt X”;
- press Blue button again until the either “SI” or “Inch” message appears on the display. “SI” – measuring results will be shown in mm, “Inch” – measuring results will be shown in inches;
- choose the necessary value by Green button pressings;
- to save the changed parameters press Red button the display shows “SAUE” message, press the Green button to confirm saving and Red to cancel saving of the changed parameters

12. Service operation modes

This section contains the description of the modes for the check of device efficiency and calibration. As erroneous actions in this mode can lead to invalid measurement results, only specially trained personnel should perform such operations.

12.1. Calibration conditions

Calibration of the device is not necessary in the current work. It is necessary only after producing, repairing and also after checking with negative result.

To perform calibration the following means are necessary:
12.2. Get into operational modes

- To get into the operational modes it is necessary to turn-off the device (press Red button more then 3 seconds).
- Keeping Green button in pushed position turn-on the device (press Red button).
- Display shows “CLbr.0” message (the mode of calibration of the sensor’s "0").
- To get into this mode it is necessary to press Green button (see. p. 11.2).
- For transition to next mode it is necessary to press Blue button.
- Display shows “CLbr.b” message (the mode of device base calibration).
- To get into this mode press Green button (see. p.11.3).
- To get out the mode of calibration press Red button.

12.3. Calibration of the sensor zero

- Zero calibration mode being enabled, the display shows the length of calibration tool.
- If editing of the length value is not required, go to the next step. To edit the length value, press the Blue button, and the digit to be edited starts blinking. Changing over between the digits is made by pressing the Blue button while changing of values is made by pressing the Green button. When editing is finished, press the Red button and confirm or cancel saving of the parameter by pressing the Green button or Red button, respectively.
- Press the Green button, and the length value starts blinking, which means that the device must be placed onto calibration tool. The measurement tip and support ball of the gauge must be tightly fitted to the flat plates of calibration tool (figure 3).
- Press the Green button, and the display shows current reading of the sensor in its own coordinate system. By moving the device, assure that repeatability of measurement results is obtained.
• If readings of the sensor are sufficiently stable, press the Blue button. Sensor zero position is calculated in the device coordinate system, and prompt appears to save calibration results. Press the Green or Red button to confirm or cancel saving of the results, respectively.

13. Charging of built-in accumulator battery

To charge accumulator battery it is necessary to connect charging devise to the power grid 85-250V and to a battery compartment on the top panel of the gauge. The period of charging is 15 hours.

14. Warranty policy

Warranty assurance for the Back-to-back measurement gauge - 24 months from the date of putting in operation; warranty shelf-life - 12 months.

15. Distributors

<table>
<thead>
<tr>
<th>AUSTRIA</th>
<th>AUSTRALIA</th>
<th>BENELUX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBM Industry & Rail Tech GmbH</td>
<td>Applied Measurement Australia Pty Ltd</td>
<td>Altheris B.V.</td>
</tr>
<tr>
<td>RAILWAY INSTRUMENTS ONLY</td>
<td>RAILWAY INSTRUMENTS ONLY</td>
<td>Vlietweg 17a, 2266KA Leidschendam, The Netherlands</td>
</tr>
<tr>
<td>Tullnerbachstraße 36, A-3002 Purkersdorf, Austria</td>
<td>Thornton Plaza, Unit 5, 27 Thornton Crescent, Mitcham VIC 3132, Australia</td>
<td>Tel: +31 70 3924421</td>
</tr>
<tr>
<td>Tel: +43 2231 66000</td>
<td>Tel: +61 39874 5777</td>
<td>Fax: +31 70 3644249</td>
</tr>
<tr>
<td>Fax: +43 2231 66000 12</td>
<td>Fax: +61 39874 5888</td>
<td>sales@altheris.nl</td>
</tr>
<tr>
<td>office@mbm-industrietechnik.at</td>
<td>sales@appliedmeasurement.com.au</td>
<td>www.altheris.com</td>
</tr>
<tr>
<td>www.mbm-tech.at</td>
<td>www.appliedmeasurement.com.au</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BULGARIA, HUNGARY</th>
<th>BRAZIL</th>
<th>CHILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMT Ltd.</td>
<td>CAPI Controle e Automação Ltda</td>
<td>Verne SpA</td>
</tr>
<tr>
<td>R Zahradní 224</td>
<td>Rua Itororó, 121, CEP 13466-240</td>
<td>Apoquindo 2818, oficina 31, Las Condes, Santiago, Chile</td>
</tr>
<tr>
<td>739 21 Paskov, Czech Republic</td>
<td>Americana-SP, Brazil</td>
<td>Tel: +56 2 228858633</td>
</tr>
<tr>
<td>Tel: +420 558640211</td>
<td>Tel: +55 19 36047068</td>
<td>info@verne.cl</td>
</tr>
<tr>
<td>Fax: +420 558640218</td>
<td>Tel: +55 19 34681791</td>
<td>jsaavedra@verne.cl</td>
</tr>
<tr>
<td>rmt@rmt.cz</td>
<td>capi@capicontrole.com.br</td>
<td>www.verne.cl</td>
</tr>
<tr>
<td>Country</td>
<td>Company Name</td>
<td>Address</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>CHINA</td>
<td>Zheshangyou Technologies Co., Ltd.</td>
<td>Rm 2205-2210, Zhongyou Hotel 1110 Nanshan Road, Nanshan District 518054 Shenzhen, China</td>
</tr>
<tr>
<td>CHINA</td>
<td>Shanghai micron-metrology com., Ltd.</td>
<td>Room 602 unit 4, lane 399, Mudan road, Pudong New district Shanghai, China</td>
</tr>
<tr>
<td>CHINA</td>
<td>JRKtech Co., Ltd.</td>
<td>1F, Building 9, 100 Xianlie Rd., Guangzhou, China</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>RMT Ltd.</td>
<td>Zahradni 224 739 21 Paskov, Czech Republic</td>
</tr>
<tr>
<td>FINLAND</td>
<td>TERÄSPYÖRÄ-STEELWHEEL OY RAILWAY INSTRUMENTS ONLY</td>
<td>Juvaan teollisuuskatu 28 FI-02920 ESPOO, Finland</td>
</tr>
<tr>
<td>FRANCE</td>
<td>DB Innovation (ALITHERIS France)</td>
<td>26, avenue de la Mediterranee 34110 Frontignan France</td>
</tr>
<tr>
<td>GERMANY</td>
<td>Disynet GmbH</td>
<td>Breyeller Str. 2 41379, Brueggen</td>
</tr>
<tr>
<td>GERMANY</td>
<td>BIP-Industrietechnik GmbH RAILWAY INSTRUMENTS ONLY</td>
<td>Am Elisabethhof 22, D-14772 Brandenburg</td>
</tr>
<tr>
<td>GERMANY</td>
<td>Finger GmbH & Co. KG OPTICAL MICROMETERS ONLY</td>
<td>Sapelloh 172, 31606 Warmsen, Germany</td>
</tr>
<tr>
<td>GERMANY</td>
<td>Hylewicz CNC-Technik SHTRIKH-2 ONLY</td>
<td>Siemensstrasse 13-15, 47608 Geldern, Germany</td>
</tr>
<tr>
<td>INDIA</td>
<td>Pragathi Solutions #698, 5th Main, 8th Cross, HAL 3rd Stage, New Tippasandra Road, Bangalore, 560075, India</td>
<td>Tel: +91 80 32973388 Tel/fax: +91 80 25293985 Mobile: +91 9448030426/+91944892380 sales@pragathisolutions.in arghya@pragathisolutions.in www.pragathisolutions.in</td>
</tr>
<tr>
<td>INDIA</td>
<td>BPI (India) RAILWAY INSTRUMENTS ONLY 63,Civil Lines, Near Bhagirathi Colony, Roorkee, 247667, India</td>
<td>Tel: +91 1332274743 Tel: +91 9319666784 sales@bpi-india.in www.bpi-india.in</td>
</tr>
<tr>
<td>INDONESIA</td>
<td>PT. DHAYA BASWARA SANIYASA Botanic Junction Blok H-9 NO. 7 Mega Kebon Jeruk, Joglo Jakarta 11640, Indonesia</td>
<td>Tel: +62 21 29325809 management@ptdbs.co.id</td>
</tr>
<tr>
<td>IRAN</td>
<td>Novin Industrial Development Grp.</td>
<td>Tel: +98 21 44022093-6 Fax: +98 21 43858794 Mobile: +98 9123207518 info@novinid.com www.novinid.com</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>Nisso Dekalo Import Export LTD 1 David Hamelech Street Herzlia 46661 Israel</td>
<td>Tel: +972-99577888 Fax: +972-99666860 eli@fly-supply.net www.fly-supply.net www.aircraft-partsupply.com</td>
</tr>
<tr>
<td>Country</td>
<td>Company Name</td>
<td>Address</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ITALY</td>
<td>FAE s.r.l.</td>
<td>Via Tertulliano, 41, 20137 Milano, Italy</td>
</tr>
<tr>
<td>LITHUANIA</td>
<td>SIA "SOLARTEX"</td>
<td>Duntes 15a, 5th floor, office B7, Rigia, Latvia</td>
</tr>
<tr>
<td>MALAYSIA</td>
<td>OptoCom InstruVentures</td>
<td>H-49-2, Jalan 5, Cosmoplex Industrial Park, Bandar Baru Salak</td>
</tr>
<tr>
<td>NORWAY</td>
<td>Salitec AS</td>
<td>PB 468, N-1327 Lysaker</td>
</tr>
<tr>
<td>PERU</td>
<td>Verne Perú S.A.C</td>
<td>Las Codornices 104, Surquillo, Lima, Peru</td>
</tr>
<tr>
<td>POLAND</td>
<td>MTL ASCO Sp. z o.o.</td>
<td>ul. Wielowiejska 53</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>UltraSens</td>
<td>Qt. da Portela, Lt. 22.1, Ap. 152, 3030 - 502 Coimbra, Portugal</td>
</tr>
<tr>
<td>RUSSIA</td>
<td>Sensorika-M LLC</td>
<td>Dmitrovskoye shosse 64-4, 127474, Moscow, Russia</td>
</tr>
<tr>
<td>RUSSIA</td>
<td>Diesel-test-Komplekt LLC</td>
<td>620030, Karjernaya St, 16, Ekaterinburg, Russia</td>
</tr>
<tr>
<td>SERBIA, SLOVAKIA</td>
<td>RMT Ltd.</td>
<td>Zahradni 224, 739 21 Paskov, Czech Republic</td>
</tr>
<tr>
<td>SOUTH AFRICA</td>
<td>Ratcom Enterprise Pty Ltd</td>
<td>CSIR BUILDING 35, Office 78 Meiring, Naude Road, Brummeria, Pretoria, 0084 South Africa</td>
</tr>
<tr>
<td>SOUTH KOREA</td>
<td>PROSEN. CO., LTD</td>
<td>M-1001, Songdo techno park IT center, 32, Songdogwahak-ro, Yeonsu-gu, Incheon, 21984, Republic of Korea</td>
</tr>
<tr>
<td>SPAIN</td>
<td>Iberfluid Instruments S.A.</td>
<td>C/ Botanica, 122, 08908 L'Hospitalet de Llobregat, Barcelona</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>ID&T GmbH</td>
<td>Gewerbestrasse 12/a, 8132 Egg (Zurich), Switzerland</td>
</tr>
<tr>
<td>SWEDEN, DENMARK</td>
<td>BLConsult</td>
<td>Ryssbält 294, 95 291 KALIX, Sweden, Mobile: +46 70 663 19 25</td>
</tr>
<tr>
<td>SWEDEN, DENMARK</td>
<td>Latronix AB</td>
<td>Propellervagen 10, 183 62 Täby, Sweden</td>
</tr>
<tr>
<td>THAILAND</td>
<td>Advantech Solution Co., Ltd.</td>
<td>20/170 Motorway Rd., Kwang Pravet, Khet Pravet, Bangkok, Thailand 10250</td>
</tr>
<tr>
<td>TURKEY</td>
<td>TEKMA Mühendislik A.Ş.</td>
<td>Cevizi Mh. M. Kemal Cd., Hukukçular Towers, A-Block, No. 66-A/39, Kartal – Istanbul</td>
</tr>
</tbody>
</table>
16. Annex 1. RIFTEK’s measurement devices for railway transport

Laser wheel profilometer. IKP Series

A laser profilometer is designed for the measuring of:
- wheel flange height;
- wheel flange thickness;
- wheel flange slope;
- full profile scanning and analyze of wheel rolling surface;
- maintaining of electronic wear data base;
- control of tolerances and sorting in the course of checkup, examination, repair and formation of railway wheel sets;
- Measurements are made directly on rolling stock without wheel set roll-out.

Portable laser rail profilometer. PRP Series

The main functions of PRP are:
- obtaining the information on the cross-section profile of the working railhead surface;
- full profile scanning and analyze of the railhead acting face;
- visualization of the combined graphical images of actual and new cross-section railhead profiles on the display of system unit.
Wheel diameter measuring gauge. IDK Series
Electronic gauge is designed for measuring wheel rolling circle diameter of railway, metro and tram wheel sets.
Measurements are made directly on rolling stock without wheel set roll-out.

Back-to-back distance measuring gauge. IMR Series
Gauge is designed for contactless measuring of back-to-back distance of railway, metro and tram wheels in the course of checkup, examination, repair and formation of wheel sets.
Measurements are made directly on rolling stock without wheel set roll-out.

Back-to-back distance measuring gauge. IMR-L Series
Gauge is designed for contactless measuring of back-to-back distance of railway, metro and tram wheels in the course of checkup, examination, repair and formation of wheel sets.
Measurements are made directly on rolling stock without wheel set roll-out.

Disc brakes profile gauge. IKD Series
Laser disc brakes profilometer IKD Series is designed for disc brakes profile measuring.
The main functions of IKD are:
- obtaining the information on the profile parameters of the working disc brakes surface;
- full profile scanning and analyze of the disc brakes acting face;
- visualization of the combined graphical images of actual and new disc brakes profiles on the display of system unit.

Automatic real-time system for measurement of wheel-sets geometrical parameters
The system is designed for contactless automatic measurement of geometrical parameters of railway wheels and uses a combination of 2D laser scanners, mounted wayside in the track area.
The system can be easily installed at any type of rail infrastructure.