LASER TRIANGULATION SENSORS

RF603HS Series

User's manual

22, Logoisky tract, Minsk
220090, Republic of Belarus
tel/fax: +375 17 357 36 57
info@riftek.com
www.riftek.com
Contents

1. Safety precautions.. 4
2. CE compliance.. 4
3. Laser safety... 4
 3.1. Class 3B sensors... 4
 3.2. Class 3R sensors... 4
 3.3. Class 2 sensors... 5
4. General information... 5
5. Basic technical data.. 6
6. Example of item designation when ordering.. 7
7. Structure and operating principle... 7
8. Dimensions and mounting.. 8
 8.1. Overall and mounting dimensions.. 8
 8.2. Overall demands for mounting... 8
9. Connection... 9
 9.1. Designation of connector contacts.. 9
 9.2. Cables... 9
10. Configuration parameters... 10
 10.1. "Time limit for integration" parameter.. 10
 10.2. "Sampling mode" parameter (synchronization)... 10
 10.3. "Sampling period" parameter... 11
 10.4. "Point of zero" parameter... 11
 10.5. Line AL operation mode.. 11
 10.6. Time lock of the result.. 12
 10.7. Method of results averaging.. 12
 10.8. Number of averaged values/time of averaging... 12
 10.9. Factory parameters table... 13
11. Description of RS232 and RS485 interfaces... 13
 11.1. RS232 port.. 13
 11.2. RS485 port.. 13
 11.3. Modes of data transfer... 13
 11.4. Configuration parameters... 13
 11.4.1. Rate of data transfer through serial port... 13
 11.4.2. Net address... 14
 11.4.3. Factory parameters table... 14
 11.5. Interfacing protocol... 14
 11.5.1. Serial data transmission format... 14
 11.5.2. Communication sessions types.. 14
 11.5.3. Request.. 14
 11.5.4. Message.. 14
 11.5.5. Answer.. 15
 11.5.6. Data stream.. 15
 11.5.7. Output Rate.. 15
 11.5.8. Request codes and list of parameters.. 15
12. Description of Ethernet interface.. 15
 12.1. Modes of data transfer.. 15
 12.2. Factory parameters table... 16
 12.3. Data packet format.. 16
 12.4. Data structure... 16
13. Voltage output... 17
14. Sensor connection... 17
15. Request codes and list of parameters.. 17
 15.1. Request codes table.. 17
15.2. List of parameters... 18
15.3. Notes.. 19
15.4. Examples of communication sessions.. 20
16. Parameterization program.. 21
 16.1. Function... 21
 16.2. Program setup.. 21
 16.3. Obtaining connection to sensor (RS232/RS485).. 22
 16.4. Checking of the sensor operability.. 23
 16.5. Connection through Ethernet interface.. 24
 16.6. Display, gathering and scanning of data.. 24
 16.7. Setting and saving parameters of the sensor.. 25
 16.7.1. Setting parameters.. 25
 16.7.2. Saving parameters.. 26
 16.7.3. Saving and writing a group of parameters .. 27
 16.7.4. Recovery of default parameters... 27
17. RFSDK Library... 27
18. Appendix... 27
 18.1. Protective housing.. 27
 18.2. Spray guard.. 28
 18.3. Size of the laser spot and mounting space.. 28
 18.4. Connector mounting options... 30
19. Warranty policy... 31
20. Revisions.. 31
21. Distributors... 31
1. **Safety precautions**
 - Use supply voltage and interfaces indicated in the sensor specifications.
 - In connection/disconnection of cables, the sensor power must be switched off.
 - Do not use sensors in locations close to powerful light sources.
 - To obtain stable results, wait about 20 minutes after sensor activation to achieve uniform sensor warm-up.
 - Mount sensor on the metal construction in order to avoid overheating of the sensor.

2. **CE compliance**
 The sensors have been developed for use in industry and meet the requirements of the following Directives:
 - EU directive 2014/30/EU. Electromagnetic compatibility (EMC).

3. **Laser safety**
 The sensors correspond to the following laser safety classes according to IEC/EN 60825-1:2014.

 3.1. **Class 3B sensors**
 The sensors make use of an c.w. 660 nm wavelength semiconductor laser. Maximum output power is 90 mW. The sensors belong to the 3B laser safety class. The following warning label is placed on the laser body:

 ![Warning label for Class 3B laser product]

 The following safety measures should be taken while operating the sensor:
 - Do not target laser beam to humans.
 - Avoid staring into the laser beam through optical instruments.
 - Mount the sensor so that the laser beam is positioned above or below the eyes level.
 - Mount the sensor so that the laser beam does not fall onto a mirror surface.
 - Use protective goggles while operating the sensor.
 - Avoid staring at the laser beam going out of the sensor and the beam reflected from a mirror surface.
 - Do not disassemble the sensor.
 - Use the protective screen mounted on the sensor for the blocking of the outgoing beam.
 - Use the laser deactivation function in emergency.

 3.2. **Class 3R sensors**
 The sensors make use of an c.w. 660 nm wavelength semiconductor laser. Maximum output power is 5 mW. The sensors belong to the 3R laser safety class. The following warning label is placed on the laser body:
The following safety measures should be taken while operating the sensor:

- Do not target laser beam to humans.
- Avoid staring into the laser beam through optical instruments.
- Mount the sensor so that the laser beam is positioned above or below the eyes level.
- Use protective goggles when operating the sensor.
- Avoid staring into the laser beam.
- Do not disassemble the sensor.

3.3. Class 2 sensors

The sensors make use of an c.w. 660 nm wavelength semiconductor laser. Maximum output power is 1 mW. The sensors belong to the 2 laser safety class. The following warning label is placed on the laser body:

The following safety measures should be taken while operating the sensor:

- Do not target laser beam to humans.
- Do not disassemble the sensor.
- Avoid staring into the laser beam.

4. General information

The sensors are intended for non-contact measuring and checking of position, displacement, dimensions, surface profile, deformation, vibrations, sorting and sensing of technological objects as well as for measuring levels of liquid and bulk materials.

The series includes 25 sensors with the measurement range, from 2 to 1250 mm and the base distance from 15 to 260 mm.

There are two options of laser mounted in the sensor, RED or BLUE laser. The use of blue lasers instead of conventional red lasers greatly enhances capabilities of the sensors, in particular, for such uses as control of high-temperature objects and organic materials.

Custom-ordered configurations are possible with parameters different from those shown below.
5. Basic technical data

<table>
<thead>
<tr>
<th>Model RF603HS-</th>
<th>X/2</th>
<th>X/5</th>
<th>X/10</th>
<th>X/15</th>
<th>X/25</th>
<th>X/30</th>
<th>X/50</th>
<th>X/100</th>
<th>X/250</th>
<th>X/500</th>
<th>X/750</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base distance X, mm</td>
<td>15</td>
<td>15</td>
<td>15, 25</td>
<td>15, 30</td>
<td>25, 45</td>
<td>35, 55</td>
<td>45, 65</td>
<td>60, 90</td>
<td>80</td>
<td>125</td>
<td>145</td>
</tr>
<tr>
<td>Measurement range, mm</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td>50</td>
<td>100</td>
<td>250</td>
<td>500</td>
<td>750</td>
</tr>
</tbody>
</table>

Max. measurement frequency, kHz 70

Linearity, % (of the range) ±0.1 (70 kHz)

Resolution, % (of the range) 0.01 (70 kHz)

Temperature drift 0.02% of the range / °C

Light source red semiconductor laser (660 nm wavelength) or UV semiconductor laser (450 nm or 405 nm wavelength, BLUE version)

Output power ≤4.8 mW ≤20 mW ≤80 mW

Output interface:

- Parameterization RS232 or RS485
- Data transfer Ethernet (UDP)
- Analog 0...10 V
- Synchronization input 2.4 – 5 V (CMOS, TTL)
- Logic output programmed functions, NPN: 100 mA max. 40 V max
- Power supply 9...36 V
- Power consumption 4.8 W

Environmental resistance:

- Enclosure rating IP67
- Vibration 20 g / 10...1000 Hz, 6 hours for each of XYZ axes
- Shock 30 g / 6 ms
- Operating ambient temperature -10...+60 °C
- Permissible ambient light 30000 lx
- Relative humidity 5-95% (no condensation)
- Storage temperature -20...+70 °C
- Housing material aluminum
- Weight (without cable) 110 gram
6. Example of item designation when ordering

Example: RF603HS(BLUE).F-X/D(R)-SERIAL-ANALOG-IN-AL-CC(R)(90)-M-H-P-B

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BLUE)</td>
<td>UV semiconductor laser (450 nm or 405 nm).</td>
</tr>
<tr>
<td>F</td>
<td>Maximal sampling frequency.</td>
</tr>
<tr>
<td>X</td>
<td>Base distance (beginning of the range), mm.</td>
</tr>
<tr>
<td>D</td>
<td>Measurement range, mm.</td>
</tr>
<tr>
<td>(R)</td>
<td>Round shape laser spot (see p. 18.3.).</td>
</tr>
<tr>
<td>SERIAL</td>
<td>The type of serial interface: (RS232 and Ethernet) – 232-ET or (RS485 and Ethernet) – 485-ET.</td>
</tr>
<tr>
<td>ANALOG</td>
<td>Attribute showing an analog output presence 0…10 V (U).</td>
</tr>
</tbody>
</table>
| IN | User programmed signal, which has several purposes:
1) Trigger input (input of synchronization).
2) Encoder_A input. |
| AL | User programmed signal, which has several purposes. It can be used as:
1) Logical output (indication of run-out beyond the range).
2) Line of mutual synchronization of two and more sensors.
3) Line of hardware zero setting.
4) Hardware laser switch ON/OFF.
5) Encoder_B input.
6) Status line input.
7) Input for Ethernet restart. |
| CC(90X)(R) | Cable gland - CG, or cable connector - CC (Binder 712, IP67).
Note 1: 90(X) option – angle cable connector (see. p. 18.4.).
Note 2: R option – robot cable. |
| M | Cable length, m. |
| H | Sensor with in-built heater. |
| P | Sensor with protect air cooling housing (see p. 18.1.). |
| B | Sensor with spray guard (see p. 18.2.). |

Example: RF603HS.70-140/100R-232-ET-U-IN-AL-24-CCR90A-3 – 70 kHz sampling frequency, base distance – 140 mm, range – 100 mm, round shape laser spot, RS232 and Ethernet serial port, 0…10 V analog output, trigger input and AL input are available, cable connector, angle type, position "A", robot cable, 3 m cable length.

7. Structure and operating principle

Operation of the sensors is based on the principle of optical triangulation (Figure 1.). Radiation of a semiconductor laser 1 is focused by a lens 2 onto an object 6. Radiation reflected by the object is collected by a lens 3 onto a linear CMOS array 4. A signal processor 5 calculates the distance to the object from the position of the light spot on the array 4.
8. Dimensions and mounting

8.1. Overall and mounting dimensions

Overall and mounting dimensions of the sensors are shown in Figure 2 and 2.1. Sensor package is made of anodized aluminum. The front panel of the package has two glass windows: one is output, the other for receiving radiation reflected from the object under control. The package also contains mounting holes.

Sensors are equipped by cable glands or connectors.

\[\text{Figure 2. Sensor with cable glands (CG)} \quad \text{Figure 2.1. Sensor with connectors (CC)}\]

8.2. Overall demands for mounting

The sensor is positioned so that of object under control should place in this working range. In addition, no foreign objects should be allowed to stay on the path of the incident and reflected laser radiation. Necessary free space for the sensor mounting is shown in p. 18.3.

Where objects to be controlled have intricate shapes and textures, the incidence of mirror component of the reflected radiation to the receiving window should be minimized.

CAUTION: To avoid overheating of the sensor, mount the sensor only to a metallic plate with area not less than 50 cm² and using thermal paste.
9. Connection

9.1. Designation of connector contacts

View from the side of connector contacts used in the sensor is shown in the following figures.

```
<table>
<thead>
<tr>
<th>Connector #1</th>
<th>Connector #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Binder 712 Series, #09-0427-80-08)</td>
<td>(Binder 712 Series, #09-0412-80-04)</td>
</tr>
</tbody>
</table>
```

Designation of contacts is given in the following tables.

Connector #1:

<table>
<thead>
<tr>
<th>Model of the sensor</th>
<th>Pin number</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>232-ET-U-IN-AL</td>
<td>1</td>
<td>IN</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Gnd (power supply)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>TXD</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>RXD</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Gnd (Common for signals)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>AL</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Power U+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model of the sensor</th>
<th>Pin number</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>485-ET-U-IN-AL</td>
<td>1</td>
<td>IN</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Gnd (power supply)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>DATA+</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>DATA-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Gnd (Common for signals)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>AL</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Power U+</td>
</tr>
</tbody>
</table>

Connector #2:

<table>
<thead>
<tr>
<th>Model of the sensor</th>
<th>Pin number</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>1</td>
<td>TX+</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>TX-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>RX+</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>RX-</td>
</tr>
</tbody>
</table>

9.2. Cables

Designation of cable wires is given in the table below.

Cable #1:

<table>
<thead>
<tr>
<th>Model of the sensor</th>
<th>Pin number</th>
<th>Assignment</th>
<th>Wire color</th>
</tr>
</thead>
<tbody>
<tr>
<td>232-U-IN-AL</td>
<td>free lead</td>
<td>-</td>
<td>Power U+</td>
</tr>
<tr>
<td></td>
<td>free lead</td>
<td>-</td>
<td>Gnd (power)</td>
</tr>
<tr>
<td></td>
<td>DB9</td>
<td>2</td>
<td>TXD</td>
</tr>
<tr>
<td></td>
<td>DB9</td>
<td>3</td>
<td>RXD</td>
</tr>
<tr>
<td></td>
<td>free lead</td>
<td>-</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>free lead</td>
<td>-</td>
<td>IN</td>
</tr>
<tr>
<td></td>
<td>free lead</td>
<td>-</td>
<td>AL</td>
</tr>
<tr>
<td></td>
<td>DB9</td>
<td>5</td>
<td>Gnd (Common for signals)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>White</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pink</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gray</td>
</tr>
</tbody>
</table>
10. Configuration parameters

The nature of operation of the sensor depends on its configuration parameters (operation modes), which can be changed only by transmission of commands through serial port RS232 or RS485. The basic parameters are as follows:

10.1. "Time limit for integration" parameter

Intensity of the reflected radiation depends on the surface characteristic of objects under control. Therefore, output power of the laser and the time of integration of radiation incident onto the CMOS-array are automatically adjusted to achieve maximum measurement accuracy.

Parameter "time limit for integration" specifies maximum allowable time of integration. If the radiation intensity received by the sensor is so small that no reasonable result is obtained within the time of integration equal to the limiting value, the sensor transmits a zero value.

Note 1. The measurement frequency depends on the integration time of the receiving array. Maximum frequency (70 kHz) is achieved for the integration time ≤14 µs. As the integration time increases above the specified value, the result updating time increases proportionally.

Note 2. Increasing of this parameter expands the possibility of control of low-reflecting (diffuse component) surfaces; at the same time this leads to reduction of measurement frequency and increases the effects of exterior light (background) on the measurement accuracy. Factory setting of the limiting time of integration is 2000 µs.

10.2. "Sampling mode" parameter (synchronization)

The sensor operation algorithm is so built that measurements are taken at a maximum possible rate determined by the integration time period, the measurement results is sent to buffer of measurements and stored therein until a new result arrives.

"Sampling mode" parameter determines the method of the readout of the result form the buffer of measurements to buffer of transmitting (a concept of "buffer of transmitting", see p. 12.1). Tree sampling modes are possible:

- Time Sampling
- Trigger Sampling
- Encoder Sampling

With Time Sampling is selected, the sensor fills a buffer of transmitting (automatically transmits measurement results from buffer of measurement into buffer of transmitting) in accordance with selected time interval (sampling period).

With Trigger sampling is selected, the sensor fills a buffer of transmitting (automatically transmits measurement results from buffer of measurement into buffer of transmitting) when
external synchronization input (IN input of the sensor) is switched and taking the division factor set into account (see p. 10.3).

With Encoder Sampling is selected, the sensor fills the buffer of transmitting when encoders inputs (Encoder_A and Encoder_B) are switched and taking the division factor set into account.

Note 1. When AL input is set as "Encoder_B" input, the line IN is set as "Encoder_A" input automatically. At other settings of AL line the input IN is used as a trigger input.

Note 2. Electrical parameters of IN-input: logical "0" - [0V..1.6V], logical "1" - [2.4V..5V].

Note 3. Electrical parameters of AL-input: logical "0" - [0V..1.6V], logical "1" - [3.3V..36V].

10.3. "Sampling period" parameter

If the Time Sampling mode is selected, the 'sampling period' parameter determines the time interval in which the sensor fills a buffer of transmitting. The time interval value is set in increments of 1 us. For example, for the parameter value equal to 100, data from buffer of measurement are transmitted into buffer of transmitting with a period of 1*100 = 1 us.

If the Trigger or Encoder Sampling mode is selected, the 'sampling period' parameter determines the division factor for the external synchronization input or encoder inputs. For example, for the parameter value equal to 100, the filling of buffer of transmitting occurs when each 100th synchronizing pulse arrives at IN input of the sensor.

10.4. "Point of zero" parameter

This parameter sets a zero point of absolute system of coordinates in any point within the limits of a working range. You can set this point by corresponding command or by connecting AL input to the ground line (this input must preliminarily be set to mode 3). When the sensor is fabricated, the base distance is set with a certain uncertainty, and, if necessary, it is possible to define the point zero more accurately.

10.5. Line AL operation mode

This line can work in one of the seven modes defined by the configuration parameter value:

- Mode 1: indication of run-out beyond the range ("0" – object is beyond the range (beyond the selected window in the range), "1" – object is within the range (within the selected window in the range).
- Mode 2: mutual synchronization of two or more sensors.
- Mode 3: hardware zero-set line.
- Mode 4: hardware laser switch OFF/ONN.
- Mode 5: Encoder_B input.
- Mode 6: status line input.
- Mode 7: Ethernet restart input.

In the "Indication of run-out beyond the range" mode, logical "1" occurs on the AL line if an object under control is located within the working range of the sensor, and logical "0" occurs if the object is absent in the working range. For example, in such mode this line can be used for controlling an actuator (a relay) which is activated when the object is present (absent) within the selected range (Fig. 3.1).

The "Mutual synchronization" mode makes it possible to synchronize measurement times of two and more sensors. It is convenient to use this mode to control one object with several sensors, e.g., in the measurement of thickness. On the hardware level, synchronization of the sensor is effected by combining AL lines (Fig. 3.2.).

In the "Hardware zero-set" mode, connection AL input to the ground potential sets beginning of coordinates into current point (Fig. 3.3.).

In the "Hardware laser switch OFF/ONN" mode, connection AL input to the ground potential switches a laser ON/OFF (Fig. 3.4.).

In the "Encoder_B" input mode, AL line is used as B_input of encoder signal (Fig. 3.3.).
In the “Status line input” mode, AL line is used for control of the status of any input signal (Fig. 3.4.). The status is transmitted in the UDP packet.

In the “Ethernet restart” mode, AL line is used for internal buffers and counters of Ethernet interface (Fig. 3.4.).

Note. For modes 3, 4 and 6, operations occur after retention of AL line at low level during 100 ms with subsequent retention at a high level during 100 ms.

Example of AL line using:

<table>
<thead>
<tr>
<th>Out of the range indication</th>
<th>Mutual synchronization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.1
Figure 6.2

<table>
<thead>
<tr>
<th>Encoder inputs mode</th>
<th>Hardware zero-set/ Hardware laser ON/OFF Ethernet restart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.3
Figure 6.4

10.6. Time lock of the result

If the sensor does not find out object or if the authentic result cannot be received, zero value is transferred. The given parameter sets time during which is transferred the last authentic result instead of zero value. Discreteness of the time setting is 5 ms.

10.7. Method of results averaging

This parameter defines one of the two methods of averaging of measurement results implemented directly in the sensor:

- Averaging over a number of results
- Time averaging

When **averaging over a number of results** is selected, sliding average is calculated. When **time averaging** is selected, the results obtained are averaged over the time interval chosen.

10.8. Number of averaged values/time of averaging

This parameter specifies the number of source results to be averaged for deriving the output value or time of the averaging (discreteness is 5 ms).

The use of averaging makes it possible to reduce the output noise and increase the sensor resolution.
Averaging over a number of results does not affect the data update in the sensor output buffer. In case of time averaging, data in the output buffer are updated at a rate equal to the averaging period.

Note. Maximum parameters value is 127.

10.9. Factory parameters table

The sensors are supplied with the parameters shown in the table below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time limit for integration</td>
<td>6 us (160 kHz), 8 us (120 kHz), 14 us (70 kHz)</td>
</tr>
<tr>
<td>Sampling mode</td>
<td>time</td>
</tr>
<tr>
<td>Sampling period</td>
<td>500 (5 ms)</td>
</tr>
<tr>
<td>Point of zero</td>
<td>Beginning of the range</td>
</tr>
<tr>
<td>Line AL operation mode</td>
<td>1</td>
</tr>
<tr>
<td>Time lock of the result</td>
<td>5 ms</td>
</tr>
<tr>
<td>Method of results averaging</td>
<td>Over a number of results</td>
</tr>
<tr>
<td>Number of averaged values</td>
<td>1</td>
</tr>
</tbody>
</table>

The parameters are stored in nonvolatile memory of the sensor. Correct changing of the parameters is carried out by using the parameterization program supplied with the sensor or a user program.

11. Description of RS232 and RS485 interfaces

RS232 и RS485 are used for sensor parameterization and data transmit. Please be aware, that maximal speed of data transmit by these interfaces does exceed 19 kHz. For high speed data transmit Ethernet interface is used.

11.1. RS232 port

The RS232 port ensures a “point-to-point” connection and allows the sensor to be connected directly to RS232 port of a computer or controller.

11.2. RS485 port

In accordance with the protocol accepted and hardware capability, the RS485 port makes it possible to connect up to 127 sensors to one data collection unit by a common bus circuit.

11.3. Modes of data transfer

Through these serial interfaces measurement data can be obtained by two methods:
- by single requests (inquiries);
- by automatic data streaming (stream).

11.4. Configuration parameters

11.4.1. Rate of data transfer through serial port

This parameter defines the rate of data transmission via the bit-serial interface in increments of 2400 bit/s. *For example*, the parameter value equal to 4 gives the transmission rate of 2400*4 = 9600 bit/s.

Note. The maximum transmission rate for RS232 interface is 460.8 kbit/s, and for RS485 interface the rate is 921.6 kbit/s.
11.4.2. Net address

This parameter defines the network address of the sensor equipped with RS485 interface.

Note. Network data communications protocol assumes the presence of ‘master’ in the net, which can be a computer or other information-gathering device, and from 1 to 127 ‘slaves’ (RF603 Series sensors) which support the protocol.

Each ‘slave’ is assigned a unique network identification code – a device address. The address is used to form requests or inquiries all over the net. Each slave receive inquiries containing its unique address as well as ‘0’ address which is broadcast-oriented and can be used for formation of generic commands, for example, for simultaneous latching of values of all sensors and for working with only one sensor (with both RS232 port and RS485 port).

Note. When the sensor receives broadcast request it fulfills command but doesn't send replay.

11.4.3. Factory parameters table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>9600 bit/s</td>
</tr>
<tr>
<td>Net address</td>
<td>1</td>
</tr>
<tr>
<td>Mode of data transfer</td>
<td>request</td>
</tr>
</tbody>
</table>

11.5. Interfacing protocol

11.5.1. Serial data transmission format

Data message has the following format:

1 start-bit 8 data bits 1 even bit 1 stop-bit

11.5.2. Communication sessions types

The communications protocol is formed by communication sessions, which are only initiated by the ‘master’ (PC, controller). There are two kinds of sessions with such structures:

1) “request”, “[message]” — “[answer]”, *square brackets include optional elements*;
2) “request” — “data stream” — “[request].

11.5.3. Request

"Request" (INC) — is a two-byte message, which fully controls communication session. The ‘request’ message is the only one of all messages in a session where most significant bit is set at 0, therefore, it serves to synchronize the beginning of the session. In addition, it contains the device address (ADR), code of request (COD) and, optional, the message [MSG].

"Request" format:

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Byte 1</th>
<th>[Bites 2…N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>INC0(7:0)</td>
<td>INC1(7:0)</td>
<td>MSG</td>
</tr>
<tr>
<td>ADR(6:0)</td>
<td>0 0 0 0</td>
<td>COD(3:0)</td>
</tr>
</tbody>
</table>

11.5.4. Message

"Message" is data burst that can be transmitted by ‘master’ in the course of the session. All messages with a "message" burst contain 1 in the most significant digit. Data in a message are transferred in tetrads. When byte is transmitted, lower tetrad goes first, and then follows higher tetrad. When multi-byte values are transferred, the transmission begins with lower byte.

The following is the format of two ‘message’ data bursts for transmission of byte:
11.5.5. **Answer**

"Answer" is data burst that can be transmitted by ‘slave’ in the course of the session. All messages with a message burst contain 1 in the most significant digit. Data in a message are transferred in tetrads. When byte is transmitted, lower tetrad goes first, and then follows higher tetrad. When multi-byte values are transferred, the transmission begins with lower byte.

When ‘answer’ is transmitted, the message contains:
- SB-bit, characterizes the updating of the result. If SB is equal to "1" this means that the sensor has updated the measurement result in the buffer, if SB is equal to "0" - then non-updated result has been transmitted (see. Note 1, p.10.3.). SB=0 when parameters transmit;
- two additional bits of cyclic binary batch counter (CNT). Bit values in the batch counter are identical for all sendings of one batch. The value of batch counter is incremented by the sending of each burst and is used for formation (assembly) of batches or bursts as well as for control of batch losses in receiving data streams.

The following is the format of two ‘answer’ data bursts for transmission of byte:

<table>
<thead>
<tr>
<th>DAT(7:0)</th>
<th>1 0 0 0</th>
<th>DAT(3:0)</th>
<th>1 0 0 0</th>
<th>DAT(7:4)</th>
</tr>
</thead>
</table>

11.5.6. **Data stream**

‘Data stream’ is an infinite sequence of data bursts or batches transmitted from ‘slave’ to ‘master’, which can be interrupted by a new request. In transmission of ‘data stream’ one of the ‘slaves’ fully holds data transfer channel, therefore, when ‘master’ produces any new request sent to any address, data streaming process is stopped. Also, there is a special request to stop data streaming.

11.5.7. **Output Rate**

Output rate, "OR" depends on Baud rate of serial interface, "BR", and is calculated by such a manner:

\[OR = \frac{1}{(44/BR+1*10^{-5})} \text{ Hz}. \]

For example, for BR=460800 b/s, Output Rate = 9.4 kHz.

11.5.8. **Request codes and list of parameters**

Request codes and list of parameters are presented in Chapter 15.

12. **Description of Ethernet interface**

Ethernet interface is used only for the reception of data from the sensor. Parameterization of sensors is carried out via RS232 or RS485 interface.

12.1. **Modes of data transfer**

The sensor can be operated in the following modes:
- No transmission.
- **Automatic data streaming mode**. At the beginning, the internal buffer of transmission of the sensor is filled with measurement data in accordance with a selected sampling mode of Time or Trigger or Encoder (see p. 10.2.) and corresponding sampling period (see p. 10.3.). After the buffer has been filled (buffer size is 168 measurements), the
sensor transmits data packet accumulated in the buffer of transmission to UDP network.

12.2. Factory parameters table

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination IP Address</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>Gateway IP address</td>
<td>192.168.0.1</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Source IP address</td>
<td>192.168.0.3</td>
</tr>
<tr>
<td>Mode of data transfer</td>
<td>time sampling</td>
</tr>
<tr>
<td>Interface condition</td>
<td>ON</td>
</tr>
</tbody>
</table>

12.3. Data packet format

The sensor sends IP/UDP packet to 512 byte data packet to destination port 603. The packet contains field of header (42 byte) and field of data (512 byte).

The data field:
- byte 0, byte 1 : 1st measurement
- byte 2, : status word for the 1st measurement
- byte 3, byte 4 : 2nd measurement
- byte 5, : status word for the 2nd measurement
- byte 501, byte 502 : 168th measurement
- byte 503, : status word for the 168th measurement
- byte 504, byte 505 : serial number of the sensor
- byte 506, byte 507 : base distance
- byte 508, byte 509 : measurement range
- byte 510, : cyclic counter of packet number
- byte 511, : packet checksum (=0)

12.4. Data structure

- The value of the result transmitted by a sensor (D) is so normalized that 4000h (16384) corresponds to a full range of the sensor (S in mm), therefore, the result in millimeters is obtained by the following formula:
 \[X = D \times S / 4000h \text{ (mm)} \] (1).
- The status word size is 1 byte. The bit 0 of status word characterizes the updating of the result. If the bit equal to "1", this means that the sensor has updated the measurement result by the time of arrival of the external synchronization pulse (beginning of a new sampling period). If the bit is equal to "0", then non-updated result has been transmitted. The bit 1 of status word characterizes status of AL line (in Encoder input mode this bit shows the direction of count). The bit 2 of status word characterizes status of IN line in the mode of Time Sampling.
- The bits 7…3 of the status word are reserved and equal to "0".
- The base distance of the sensor is transmitted as a 16-bit word with discreteness of 1 mm.
- The sensor measurement range is transmitted as a 16-bit word with discreteness of 1 mm.
- Cyclic counter of packet number has a one-byte size. The counter value is incremented with transmission of each packet and is used to control packet loss in the course of data reception.
- The packet checksum has a one-byte size and is calculated as XOR of all the bytes of packet.
13. Voltage output

The connection scheme is shown in the figure. To reduce noise, it is recommended to install RC filter before the measuring instrument. The filter capacitor value is indicated for maximum sampling frequency of the sensor (150 kHz) and this value increases in proportion to the frequency reduction.

![Connection scheme](image)

NOTE: When Ethernet interface and analog output work simultaneously, the sampling frequency of the sensor can't be more than 150 kHz.

14. Sensor connection

Switch off the power supply. Connect cable #1 to the sensor (p. 9.1) and other cable end - to PC (use interface adapter if necessary).

Note 1: Connection of RS232 (RS485) is necessary if parametrization (or parameters viewing) of the sensor is suggested.

Connect cable #2 to the sensor and other cable end – to Ethernet connector PC or to the switch. Connect the power supply (+9...+36 V) to the Power U+ и Gnd wires. Switch on the power supply.

15. Request codes and list of parameters

15.1. Request codes table

<table>
<thead>
<tr>
<th>Request code</th>
<th>Description</th>
<th>Message (size in bytes)</th>
<th>Answer (size in bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h</td>
<td>Device identification</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>- device type (1)</td>
<td>- firmware releas (1)</td>
<td>- serial number (2)</td>
</tr>
<tr>
<td></td>
<td>- base distance (2)</td>
<td>- range (2)</td>
<td></td>
</tr>
<tr>
<td>02h</td>
<td>Reading of parameter</td>
<td>- code of parameter (1)</td>
<td>- value of parameter(1)</td>
</tr>
<tr>
<td>03h</td>
<td>Writing of parameter</td>
<td>- code of parameter (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- value of parameter</td>
<td>- value of parameter (1)</td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>Storing current parameters to FLASH-memory</td>
<td>- constant AAh (1)</td>
<td>- constant AAh (1)</td>
</tr>
<tr>
<td>04h</td>
<td>Recovery of parameter default values in FLASH-memory</td>
<td>- constant 69h (1)</td>
<td>- constant 69h (1)</td>
</tr>
<tr>
<td>05h</td>
<td>Latching of current result</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>06h</td>
<td>Inquiring of result</td>
<td>—</td>
<td>- result (2)</td>
</tr>
<tr>
<td>07h</td>
<td>Inquiring of a stream of results</td>
<td>—</td>
<td>- stream of results (2)</td>
</tr>
<tr>
<td>08h</td>
<td>Stop data streaming</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
15.2. List of parameters

<table>
<thead>
<tr>
<th>Code of parameter</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Sensor ON</td>
<td>1 — laser is ON, measurements are taken (default state); 0 — laser is OFF, sensor in power save mode</td>
</tr>
<tr>
<td>01h</td>
<td>Analog output ON</td>
<td>1/0 — analog output is ON/OFF; if a sensor has no analog output, this bit will remain in 0 despite all attempts of writing 1 into it.</td>
</tr>
<tr>
<td>02h</td>
<td>Averaging, sampling and AL output control</td>
<td>xx,M,C,M1,M0,R,S — control byte which determines averaging mode — bit M, CAN interface mode - bit C, logical output mode - bit M1, analog output mode - bit R, and sampling mode - bit S; bites x – do not use; bit M: 0 — quantity sampling mode (by default); 1 — time sampling mode; bit C: 0 — request mode of CAN interface (by default); 1 — synchronization mode of CAN interface. bit M1 and M0: 00 — out of the range indication (by default); 01 — mutual synchronization mode. 10 — hardware zero set mode. 11 — laser turn OFF/ON. 100 — Encoder_B input mode. 101 — status line input mode. 110 — Ethernet reset mode. bit S: 0 — time sampling (default) 1 — trigger sampling.</td>
</tr>
<tr>
<td>03h</td>
<td>Network address</td>
<td>1…127 (default — 1)</td>
</tr>
<tr>
<td>04h</td>
<td>Rate of data transfer through serial port</td>
<td>1…192, (default — 4) specifies data transfer rate in increments of 2400 baud; e.g., 4 means the rate of 4:2400=9600baud. (NOTE: max baud rate = 460800)</td>
</tr>
<tr>
<td>05h</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>06h</td>
<td>Number of averaged values</td>
<td>1…128, (default — 1)</td>
</tr>
<tr>
<td>07h</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>08h</td>
<td>Lower byte of the sampling period</td>
<td>1) 10…65535, (default — 500)</td>
</tr>
<tr>
<td>09h</td>
<td>Higher byte of the sampling period</td>
<td>2) 1…65535, (default — 500) dividier ratio of trigger input with which sensor automatically communicates of result on streaming request (priority of sampling = 1)</td>
</tr>
<tr>
<td>0Ah</td>
<td>Lower byte of maximum integration time</td>
<td>2…65535, (default — 200) specifies the limiting time of integration by CMOS-array in increments of 1mks</td>
</tr>
<tr>
<td>0Bh</td>
<td>Higher byte of maximum integration time</td>
<td></td>
</tr>
<tr>
<td>0Ch</td>
<td>Lower byte for the beginning of analog output range</td>
<td>0…4000h, (default — 0) specifies a point within the absolute range of transducer where the analog output has a minimum value</td>
</tr>
<tr>
<td>0Dh</td>
<td>Higher byte for the beginning of analog output range</td>
<td></td>
</tr>
<tr>
<td>0 Eh</td>
<td>Lower byte for the end of analog output range</td>
<td>0…4000h, (default — 4000h)) specifies a point within the absolute range of transducer where the analog output has a maximum value</td>
</tr>
<tr>
<td>0Fh</td>
<td>Higher byte for the end of analog output range</td>
<td></td>
</tr>
</tbody>
</table>
Code of Parameter

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>10h</td>
<td>Time lock of result</td>
<td>0...255, specifies of time interval in increments of 5 mc</td>
</tr>
<tr>
<td>11h</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>17h</td>
<td>Lower zero point</td>
<td>0...4000h, (default — 0) specifies beginning of absolute coordinate system.</td>
</tr>
<tr>
<td>18h</td>
<td>Higher byte zero point</td>
<td></td>
</tr>
<tr>
<td>19h</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>6Ch</td>
<td>0th byte of Destination IP Address</td>
<td>by default — FFFFFFFFh = 255.255.255.255</td>
</tr>
<tr>
<td>6Dh</td>
<td>1st byte of Destination IP Address</td>
<td></td>
</tr>
<tr>
<td>6 Eh</td>
<td>2nd byte of Destination IP Address</td>
<td></td>
</tr>
<tr>
<td>6Fh</td>
<td>3rd byte of Destination IP Address</td>
<td></td>
</tr>
<tr>
<td>70h</td>
<td>0th byte of Gateway IP Address</td>
<td>by default — C0A80001h = 192.168.0.1</td>
</tr>
<tr>
<td>71h</td>
<td>1st byte of Gateway IP Address</td>
<td></td>
</tr>
<tr>
<td>72h</td>
<td>2nd byte of Gateway IP Address</td>
<td></td>
</tr>
<tr>
<td>73h</td>
<td>3rd byte of Gateway IP Address</td>
<td></td>
</tr>
<tr>
<td>74h</td>
<td>0th byte of Subnet Mask</td>
<td>by default — FFFFF00h = 255.255.255.0</td>
</tr>
<tr>
<td>75h</td>
<td>1st byte of Subnet Mask</td>
<td></td>
</tr>
<tr>
<td>76h</td>
<td>2nd byte of Subnet Mask</td>
<td></td>
</tr>
<tr>
<td>77h</td>
<td>3rd byte of Subnet Mask</td>
<td></td>
</tr>
<tr>
<td>78h</td>
<td>0th byte of Source IP Address</td>
<td>by default — C0A80003h = 192.168.0.3</td>
</tr>
<tr>
<td>79h</td>
<td>1st byte of Source IP Address</td>
<td></td>
</tr>
<tr>
<td>7Ah</td>
<td>2nd byte of Source IP Address</td>
<td></td>
</tr>
<tr>
<td>7Bh</td>
<td>3rd byte of Source IP Address</td>
<td></td>
</tr>
<tr>
<td>88h</td>
<td>ETHERNET interface ON/OFF</td>
<td>0 — ETHERNET interface OFF; 1 — ETHERNET interface ON (UDP protocol)</td>
</tr>
</tbody>
</table>

15.3. Notes

- All values are given in binary form.
- Base distance and range are given in millimeters.
- The value of the result transmitted by a sensor (D) is so normalized that 4000h (16384) corresponds to a full range of the sensor (S in mm), therefore, the result in millimeters is obtained by the following formula:
 \[X = \frac{D \times S}{4000h} \text{ (mm)} \] (1).
- On special request (05h), the current result can be latched in the output buffer where it will be stored unchanged up to the moment of arrival of request for data transfer. This request can be sent simultaneously to all sensors in the net in the broadcast mode in order to synchronize data pickup from all sensors.
- When working with the parameters, it should be borne in mind that when power is OFF the parameter values are stored in nonvolatile FLASH-memory of the sensor. When power is ON, the parameter values are read out to RAM of the sensor. In order to retain these changes for the next power-up state, a special command for saving current parameter values in the FLASH-memory (04h) must be run.
- Parameters with the size of more than one byte should be saved starting from the high-order byte and finishing with the low-order byte.
15.4. **Examples of communication sessions**

1) Request "Device identification".
Condition: device address — 1, request code – 01h, device type — 64 (40h), firmware release — 08 (08h), serial number — 0402 (0192h), base distance — 80mm (0050h), measurement range — 50мм (0032h), packet number — 1.

The request format:

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Byte 1</th>
<th>[Bytes 2…N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>INC0(7:0)</td>
<td>INC1(7:0)</td>
<td>MSG</td>
</tr>
<tr>
<td>0</td>
<td>ADR(6:0)</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td></td>
<td>COD(3:0)</td>
<td></td>
</tr>
</tbody>
</table>

Request from “Master”

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Byte 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>INC0(7:0)</td>
<td>INC1(7:0)</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 81h</td>
<td></td>
</tr>
</tbody>
</table>

The following is the format of two ‘answer’ data bursts for transmission of byte DAT(7:0):

<table>
<thead>
<tr>
<th>DAT(7:0)</th>
<th>Byte 0</th>
<th>Byte 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 0</td>
<td>CNT(1:0) DAT(3:0)</td>
</tr>
<tr>
<td>DAT(7:4)</td>
<td></td>
<td>1 0 CNT(1:0)</td>
</tr>
</tbody>
</table>

Answer of “Slave”:

Device type

<table>
<thead>
<tr>
<th>DAT(7:0)</th>
<th>Byte 0</th>
<th>Byte 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 90h</td>
<td>94h</td>
</tr>
</tbody>
</table>

Firmware release

<table>
<thead>
<tr>
<th>DAT(7:0)</th>
<th>Byte 0</th>
<th>Byte 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 98h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Serial number

<table>
<thead>
<tr>
<th>DAT(7:0)</th>
<th>Byte 0</th>
<th>Byte 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 92h</td>
<td>96h</td>
</tr>
<tr>
<td>DAT(7:0)</td>
<td>Byte 0</td>
<td>Byte 1</td>
</tr>
<tr>
<td></td>
<td>1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 91h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Base distance

<table>
<thead>
<tr>
<th>DAT(7:0)</th>
<th>Byte 0</th>
<th>Byte 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 90h</td>
<td>95h</td>
</tr>
<tr>
<td>DAT(7:0)</td>
<td>Byte 2</td>
<td>Byte 3</td>
</tr>
<tr>
<td></td>
<td>1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 90h</td>
<td>90h</td>
</tr>
</tbody>
</table>
Measurement range

<table>
<thead>
<tr>
<th>DAT(7:0)</th>
<th></th>
<th>DAT(7:0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Byte 2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: as bust number = 1, then CNT = 1

2) Request "Reading of parameter".
Condition: device address — 1, request code — 02h, code of parameter — 05h, value of parameter — 04h, packet number — 2.
Request ("Master") — 01h, 82h
Message ("Master") — 85h, 80h
Answer ("Slave") — A4h, A0h

3) Request "Inquiring of result".
Condition: device address — 1, result — 02A5h, packet number — 3.
Request ("Master") — 01h, 86h
Message ("Master") — B5h, BAh, B2h, B0h
Measured distance (mm) (for example, range of the sensor= 50 mm):
X=677(02A5h)*50/16384 = 2.066 mm

4) Request "writing sampling regime (trigger sampling)".
Condition: device address – 1, request code – 03h, code of parameter – 02h, value of parameter – 01h.
Request ("Master") – 01h, 83h
Message ("Master") – 82h, 80h, 81h, 80h

5) Request: "writing the divider ration"
Condition: divider ration – 1234=3039h, device address – 1, request code – 03h, code of parameter – 09h (first or higher byte), value of parameter – 30h
Request ("Master") – 01h, 83h
Message ("Master") – 89h, 80h, 80h, 83h
and for lower byte, code of parameter – 08h, value of parameter – 39h
Request ("Master") – 01h, 83h
Message ("Master") – 88h, 80h, 89h, 83h

16. **Parameterization program**

16.1. **Function**

The program is intended for:
1) Testing and demonstration of work of the sensors.
2) Setting of the sensor parameters.
3) Reception and gathering of the sensor data signals.

16.2. **Program setup**

Start RF603setup.exe and follow instructions of the installation wizard.
16.3. Obtaining connection to sensor (RS232/RS485)

Once the program is started, the pop-up window emerges:

To obtain connection via RS232/RS485 interfaces, go to RS232/RS485 PC settings in the Interface configuration parameters panel:

- Select COM-port where the sensor is connected (logical port if the sensor is connected via USB-adapter).
- Select transmission rate (Baud rate) at which the sensor will work.
- Select the sensor network address, if necessary.
- Click the Device identification button.

If the selected parameters correspond to the parameters of the sensor interface, the program will identify the sensor, read and display its configuration parameters:
If connection is not established, a prompt will appear asking to make automatic search of the sensor:

To start search, click the Yes button:

- Set the range of transmission rate search in the Baud rate line.
- Set the range of network address search in the Set net address line.
- Click the Search button.

The program will perform automatic search of the sensor by searching over possible rates, network addresses and COM-ports of the PC.

16.4. Checking of the sensor operability

Once the sensor is successfully identified, check its operability as follows:

- Place an object inside the sensor working range.
- By pressing the Request button, obtain the result of one measurement on the (Current result) indicator. The 06h request type is realized (see par. 15.1.).
- Pressing the Stream button will switch the sensor to the data stream transmission mode. The 07h request type is realized (see par. 15.1.).
- By shifting the object, observe changes in the readings.
- The status line in the lower part of the window will show the current data transmission and refreshing rates.

Pressing the Stop stream button will stop the data transmission.
16.5. Connection through Ethernet interface

For data reception via Ethernet interface:
- Tick **Ethernet stream** in the **Ethernet** tab.
- If there are several sensors in the network, write in the **Serial number** field the serial number of the sensor from which data have to be received.
- Click the **Stream** button.

Note 1. If the **Serial number** field is empty, the program will work with the sensor from which data came first.

Note 2. If **Ethernet stream** is not selected (ticked) while the sensor is connected also via RS232/RS485, then data will be received through the latter interface.

16.6. Display, gathering and scanning of data

Measurement result is displayed in digital form and in the form of oscillogram and is stored in the PC memory.
- The number of points displayed along the X coordinate can be set in the **Number of points in buffer** window.
- Scaling method along the Y coordinate can be set by the **Auto scaling** function.
- Turning on / turning off the scaling grid is effected by using the **Grid** function.
- The number of displayed digits after decimal point can be set in the **Set** window.
- To save received data to a file, select (tick) **Write data file**.
Note: The number of points displayed on the graph depends on PC speed and becomes smaller in proportion to the data transmission rate. After the stream is stopped by using the Stop Stream button, the graph will display all data received.

- To work with the image, click the right mouse key on the graph to call the corresponding menu:

- To move the image, just press the mouse wheel.
- To zoom, rotate the mouse wheel.
- To save data to a file, click the Export button. The program will offer to save data in two possible formats: internal and Excel.
- To scan or look at previously saved data, click the Import button and select the required file.

16.7. Setting and saving parameters of the sensor

16.7.1. Setting parameters

Parameterization of the sensor is only effected through RS232 or RS485 interfaces. Setting of parameters for all interfaces can be done using the respective tabs on the Interfaces configuration parameters panel:
Setting of all configuration parameters of the sensor is possible with the help of the respective panel (Sensor configuration parameters):

16.7.2. Saving parameters

- After setting one or several parameters as required, it is necessary to write them into the sensor memory, this is done by executing File>Write parameters.

 Note: A special button is offered for fast writing of parameters of the RS232/RS485 interfaces.

- Perform testing of the sensor operation with new parameters.
- To store new parameters in nonvolatile memory, execute File>Write to flash. Now, with any subsequent activation of the sensor it will work in the configuration you have selected.
16.7.3. Saving and writing a group of parameters

Parameters of the sensor can be saved to a file. This is done by selecting File>Write parameters.

To call a group of parameters from a file, select File>Sensor parameters sets..., and select the file required. Note: these functions are convenient to use if it is necessary to write identical parameters to several sensors.

16.7.4. Recovery of default parameters

To restore the sensor parameters set by default, use File>Restore defaults.

17. RFSDK Library

To work with the laser sensors, we offer a RFSDK library which is available for free download on the RIFTEK company website.

RFSDK contains API to work with all products of our company, documentation on classes and methods, examples and wrappers for various program languages.

RFSDK allows users to develop their own software products without going into details of data communication protocol for the sensor.

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service program</td>
<td>User software for work with laser sensors, parameter setting, and data acquisition</td>
<td>http://www.riftek.com/media/documents/rf60x/rf60x-sp.zip</td>
</tr>
<tr>
<td>RF Device Software Development Kit</td>
<td>Designed for work with all RIFTEK’s devices. Includes:</td>
<td>http://www.riftek.com/media/documents/software/RFDevice_SDK.zip</td>
</tr>
<tr>
<td></td>
<td>• Support of MSVC and BorlandC for Windows, Linux, Wrapper C#, Wrapper Delphi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Examples for C#, Delphi, LabVIEW, MATLAB</td>
<td></td>
</tr>
<tr>
<td>Firmware</td>
<td>Includes:</td>
<td>http://www.riftek.com/media/documents/rf603HS/SP.zip</td>
</tr>
<tr>
<td></td>
<td>• Firmware for RF603HS sensors</td>
<td></td>
</tr>
</tbody>
</table>

18. Appendix

18.1. Protective housing

Air-cooled protective housing can be used when operating sensor under conditions of elevated temperatures and high pollution levels. Overall and mounting dimensions of the housing are shown in Fig. 4. Basic requirements:

• Temperature of pressed air at the sensor input <25°C.
• Air must be clear of oil and moisture.
• Maximum allowable ambient temperature 120°C for air pressure of 6 atm.
• The sensor is calibrated directly in the housing, therefore if the device is used without housing linearity of characteristics is lost.
18.2. **Spray guard**

The spray guard is intended to reduce dirtying of the sensor windows. Overall dimensions are shown in Fig. 5.

18.3. **Size of the laser spot and mounting space**

The laser spot dimensions for two device modifications (elliptical spot and round spot) as well as parameters characterizing required space for the passing of laser beams are given in the table and explained in the figure 6 (names: SMR – start of measuring (working) range, MMR – midpoint of measuring (working) range, EMR – end of measuring (working) range, MR – measuring (working) range).
<table>
<thead>
<tr>
<th>RF603-</th>
<th>D, um</th>
<th>D1, um</th>
<th>D2, um</th>
<th>α, deg</th>
<th>β, deg</th>
<th>A, mm</th>
<th>B, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/2</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>15/5</td>
<td>100</td>
<td>40</td>
<td>100</td>
<td>200</td>
<td>60</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>15/10</td>
<td>250</td>
<td>50</td>
<td>250</td>
<td>350</td>
<td>80</td>
<td>350</td>
<td>700</td>
</tr>
<tr>
<td>25/10</td>
<td>200</td>
<td>50</td>
<td>200</td>
<td>300</td>
<td>80</td>
<td>300</td>
<td>650</td>
</tr>
<tr>
<td>60/10</td>
<td>200</td>
<td>60</td>
<td>200</td>
<td>250</td>
<td>80</td>
<td>250</td>
<td>700</td>
</tr>
<tr>
<td>15/15</td>
<td>400</td>
<td>60</td>
<td>400</td>
<td>450</td>
<td>100</td>
<td>450</td>
<td>1000</td>
</tr>
<tr>
<td>30/15</td>
<td>300</td>
<td>70</td>
<td>300</td>
<td>350</td>
<td>80</td>
<td>350</td>
<td>900</td>
</tr>
<tr>
<td>65/15</td>
<td>220</td>
<td>80</td>
<td>220</td>
<td>250</td>
<td>90</td>
<td>250</td>
<td>850</td>
</tr>
<tr>
<td>25/25</td>
<td>400</td>
<td>60</td>
<td>400</td>
<td>500</td>
<td>70</td>
<td>500</td>
<td>1400</td>
</tr>
<tr>
<td>45/25</td>
<td>400</td>
<td>70</td>
<td>400</td>
<td>450</td>
<td>80</td>
<td>450</td>
<td>1100</td>
</tr>
<tr>
<td>80/25</td>
<td>250</td>
<td>80</td>
<td>250</td>
<td>350</td>
<td>90</td>
<td>350</td>
<td>800</td>
</tr>
<tr>
<td>35/30</td>
<td>500</td>
<td>70</td>
<td>500</td>
<td>550</td>
<td>80</td>
<td>550</td>
<td>1200</td>
</tr>
<tr>
<td>55/30</td>
<td>350</td>
<td>60</td>
<td>350</td>
<td>450</td>
<td>90</td>
<td>450</td>
<td>800</td>
</tr>
<tr>
<td>95/30</td>
<td>300</td>
<td>90</td>
<td>300</td>
<td>350</td>
<td>120</td>
<td>350</td>
<td>900</td>
</tr>
<tr>
<td>45/50</td>
<td>600</td>
<td>80</td>
<td>600</td>
<td>700</td>
<td>100</td>
<td>700</td>
<td>1600</td>
</tr>
<tr>
<td>65/50</td>
<td>500</td>
<td>80</td>
<td>500</td>
<td>600</td>
<td>90</td>
<td>600</td>
<td>1100</td>
</tr>
<tr>
<td>105/50</td>
<td>400</td>
<td>90</td>
<td>400</td>
<td>450</td>
<td>100</td>
<td>450</td>
<td>800</td>
</tr>
<tr>
<td>60/100</td>
<td>700</td>
<td>70</td>
<td>700</td>
<td>900</td>
<td>80</td>
<td>900</td>
<td>2000</td>
</tr>
<tr>
<td>90/100</td>
<td>700</td>
<td>100</td>
<td>700</td>
<td>900</td>
<td>120</td>
<td>900</td>
<td>1300</td>
</tr>
<tr>
<td>140/100</td>
<td>600</td>
<td>120</td>
<td>600</td>
<td>650</td>
<td>140</td>
<td>650</td>
<td>1100</td>
</tr>
<tr>
<td>80/250</td>
<td>1300</td>
<td>130</td>
<td>1300</td>
<td>1700</td>
<td>150</td>
<td>2400</td>
<td>2500</td>
</tr>
</tbody>
</table>

Figure 6
18.4. Connector mounting options

Overall dimensions of a cable connector sensor are shown in Fig. 7 and mounting options for 90 degree connector are shown in Fig. 8.
19. Warranty policy

Warranty assurance for the Laser triangulation sensors RF603HS - 24 months from the date of putting in operation; warranty shelf-life - 12 months.

20. Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.01.2013</td>
<td>1.1.0</td>
<td>Starting document.</td>
</tr>
<tr>
<td>10.11.2013</td>
<td>2.0.0</td>
<td>Housing size is changed. 4 models are added. 0...10V analog output is added. Sample frequencies are changed. Distributors list is updated.</td>
</tr>
<tr>
<td>18.12.2013</td>
<td>2.1.0</td>
<td>Synchronization input is changed from optocoupled to 2.4 – 5 V (CMOS, TTL).</td>
</tr>
<tr>
<td>14.12.2014</td>
<td>3.0.0</td>
<td>Sampling frequencies are increased to 60 kHz, 120 kHz and 180 kHz. New modes of AL line are added. Encoder synchronization mode is added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Description of RS232 and RS485 interfaces is added. Parameterization by Terminal is eliminated. Description of parameterization software added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Links for RFSDK download added.</td>
</tr>
<tr>
<td>29.01.2019</td>
<td>3.2.0</td>
<td>Par. 18.3: the table is updated.</td>
</tr>
<tr>
<td>09.01.2020</td>
<td>3.3.0</td>
<td>The maximum frequency has been changed from 180 kHz to 160 kHz, the integration time has been changed from 5 µs to 6 µs.</td>
</tr>
<tr>
<td>13.07.2020</td>
<td>3.4.0</td>
<td>The maximum frequency has been changed to 70 kHz. The maximum output power has been changed to 80 mW for X/250, X/500 and X/750 models.</td>
</tr>
</tbody>
</table>

21. Distributors

AUSTRIA
MBM Industry & Rail Tech GmbH
RAILWAY INSTRUMENTS ONLY
Tullnerbachstraße 36, A-3002 Purkersdorf, Austria
Tel: +43 2231 66000
Fax: +43 2231 66000 12
office@mbm-industrietechnik.at
www.mbm-tech.at

AUSTRALIA
Applied Measurement Australia Pty Ltd
RAILWAY INSTRUMENTS ONLY
Thornton Plaza, Unit 5, 27 Thornton Crescent, Mitcham VIC 3132, Australia
Tel: +61 39874 5777
Fax: +61 39874 5888
sales@appliedmeasurement.com.au
www.appliedmeasurement.com.au

BENELUX
Althen Sensors & Controls BV
Vlietweg 17a
2266KA Leidschendam
The Netherlands
Tel: +31 70 3924421
Fax: +31 70 3644429
sales@althen.nl
www.althensensors.com
www.althencontrols.com
BULGARIA, HUNGARY
RMT Ltd.
R Zahradni 224
739 21 Paskov, Czech Republic
Tel: +420 558640211
Fax: +420 558640218
rmt@rmt.cz
www.rmt.cz

BRAZIL
CAPI Controle e Automação Ltda
Rua Itororó, 121, CEP 13466-240
Americana-SP, Brazil
Tel: +55 19 36047068
Fax: +55 19 34681791
capi@capicontrole.com.br
www.capicontrole.com.br

CHILE
Verne SpA
Apoquindo 2818, oficina 31,
Las Condes, Santiago, Chile
Tel: +56 2 228858633
info@verne.cl
jsaavedra@verne.cl
www.verne.cl

CHINA
Beijing Gemston Mechanical & Electrical Equipment Co., Ltd
Room 613, Anfu Mansion, Fengtai District, Beijing, China
Tel: +86 10 6765 0516
Fax: +86 10 6765 6966
Mobile: +86 137 1755 1423
dh0526@163.com
www.baoft.cn

CHINA
JRKtech Co., Ltd.
1F, Building 9, 100 Xianlie Rd.,
Guangzhou, China
Tel: +86 755 85267190/
+86 15989362481
Fax: +86 755 85267190
shengz_k@163.com
www.jrktech.com

CHINA
Zhenshangyou Technologies Co., Ltd.
Rm 2205-2210, Zhongyou Hotel
1110 Nanshan Road, Nanshan District, Shenzhen, China
Tel: +86 755-26528100/8011/8012
Fax: +86 755-26528210/26435640
info@51sensors.com
www.51sensors.com

CZECH REPUBLIC
RMT Ltd.
Zahradni 224
739 21 Paskov, Czech Republic
Tel: +420 558640211
Fax: +420 558640218
rmt@rmt.cz
www.rmt.cz

FINLAND
TERÄSPYÖRÄ-STEELWHEEL OY
Juvan teollisuuskatu 28
FI-02920 ESPOO, Finland
Tel: +358 400 422 900
Fax: +358 9 2511 5510
steelwheel@steelwheel.fi
www.teraspypora.fi

FRANCE
BLET Measurement Group S.A.S.
1 avenue du Président Georges Pompidou, 92500 Rueil Malmaison, France
Tel: +33(0)1 80 88 57 85
Fax: +33(0)1 80 88 57 93
technique@blet-mesure.fr
www.blet-mesure.fr

GERMANY
Disynet GmbH
Breyeller Str. 2
41379, Brueggen
Tel: +49 2157 8799-0
Fax: +49 2157 8799-22
disynet@sensoren.de
www.sensoren.de

INDIA
Paragathi Solutions
#698, 5th Main, 8th Cross, HAL 3rd Stage,
New Tippanasandra Road, Bangalore, 560075, India
Tel: +91 80 32973388
Fax: +91 80 25293985
Mobile: +91 9448030426/
+9119448492380
sales@pragathisolutions.in
arghya@pragathisolutions.in
www.pragathisolutions.in

INDIA
Paragon Instrumentation Engineers Pvt. Ltd.
RAILWAY INSTRUMENTS ONLY
200, Station Road,
Roorkee, 247 667, India
Tel: +91-1332-272394
tanui@paragoninstruments.com
www.paragoninstruments.com

valid for sensors with serial numbers 17559 and higher
RF603HS [Revision 3.4.0] 13.07.2020