

ИНСПЕКЦИОННАЯ МАШИНА ВНУТРЕННЕЙ ПОВЕРХНОСТИ УГОЛЬНОЙ ГОРЕЛКИ

Серия РФ096-440/1440-2000

Руководство по эксплуатации

Логойский тракт, 22, г. Минск 220090, Республика Беларусь тел/факс: +375 17 357 36 57 info@riftek.com www.riftek.com

Содержание

1.	Мер	ы предосторожности	3
2.	Евр	опейское соответствие	3
3.	Лазе	ерная безопасность	3
4.	Назі	начение	3
5.	Осн	овные технические характеристики	3
6.	Осн	овные характеристики программного обеспечения	4
7.	Устр	ройство и принцип работы	4
7	.1.	Лазерный сканирующий модуль	5
7	.2.	Установочная рама	6
7	.3.	Направляющая и центратор	7
7	.4.	Планшет	7
8.	Ком	плектность поставки	8
9.	При	мер обозначения при заказе	9
10.	По	дготовка к работе	9
11.	Ce	рвисная программа	10
1	1.1.	Системные требования	10
1	1.2.	Настройка настольного ПК (Desktop)	10
1	1.3.	Настройка планшета (Tablet)	14
1	1.4.	Запуск сервисной программы	15
1	1.5.	Главное окно сервисной программы	15
1	1.6.	Выбор языка пользовательского интерфейса	16
1	1.7.	Подключение и отключение машины	17
1	1.8.	Ручное управление системой перемещения	17
1	1.9.	Калибровка машины	17
12.	Ска	анирование объекта	18
13.	Пр	осмотр данных	19
14.	Co	хранение, чтение и экспорт данных	20
15.	Ис	пользование эталонной модели	20
1	5.1.	Сохранение текущего сканирования в качестве нулевой модели	21
1	5.2.	Загрузка нулевой модели	21
1	5.3.	Совмещение нулевой и отсканированной модели. Ручной режим	21
1	5.4.	Совмещение нулевой и отсканированной модели. Полуавтоматический	
реж	им		23
1	5.5.	Просмотр разницы нулевой и отсканированной моделей	23
16.	Tex	хническая поддержка	24
17.	Гар	рантийное обслуживание и ремонт	25
18.	Изі	менения	25

1. Меры предосторожности

• Не используйте машину вблизи мощных источников света.

2. Европейское соответствие

Машина разработана для использования в промышленности и соответствует следующим Директивам:

- Directive 2014/30/EU (Электромагнитная совместимость).
- Directive 2011/65/EU, "RoHS" category 9 (Ограничение использования опасных и вредных веществ в электрооборудовании и электронном оборудовании).

3. Лазерная безопасность

В машине используется полупроводниковый лазер с непрерывным излучением и длиной волны 660 нм. Максимальная выходная мощность – 1 мВт. Машина относится к классу 2 лазерной безопасности в соответствии с IEC/EN 60825-1:2014. На корпусе размещена предупреждающая этикетка:

При работе с машиной необходимо соблюдать следующие меры безопасности:

- не направляйте лазерный луч на людей;
- не разбирайте лазерный датчик;
- не смотрите на лазерный луч.

4. Назначение

Машина предназначена для измерения геометрических параметров внутренней поверхности промышленной угольной горелки (Fine Coal Burner).

5. Основные технические характеристики

Параметр	Значение
Диапазон измерения внутреннего диаметра, мм	4401440
Погрешность измерения внутреннего диаметра, мм	±0,5
Пространственное разрешение, точек/оборот	2008
Диапазон глубины сканирования, мм	02000 (программируемый параметр)
Минимальное расстояние между измеряемыми сечениями, мм	1 (программируемый параметр)
Погрешность контроля линейного перемещения, мм	±0,1
Частота выборки лазерного датчика, макс, Гц	9400
Источник излучения	красный полупроводниковый лазер, длина волны 660 нм
Выходная мощность, мВт	<1
Класс лазерной безопасности	2 (IEC60825-1)

Параметр	Значение
Интерфейс	WiFi
Напряжение питания, В	Аккумуляторы 12V
Вес, кг	77

6. Основные характеристики программного обеспечения

Программное обеспечение предназначено для:

- параметризации и управления процессом сканирования;
- калибровки машины;
- формирования 3D-модели объекта на основе данных, полученных при сканировании;
- визуального просмотра 3D-модели;
- сравнение моделей, полученных в разные моменты времени;
- сравнения полученной модели с идеальной;
- расчета величин отклонения формы (степени износа поверхности) выбранных моделей;
- расчета параметров окружности в любом поперечном сечении объекта, а именно диаметра (среднего, максимального, минимального), овальности, округлости;
- сохранения, чтения и экспорта данных.

7. Устройство и принцип работы

Работа машины основана на принципе сканирования внутренней поверхности изделия вращающимся триангуляционным лазерным датчиком.

Основные узлы машины, готовой к работе, показаны на рисунке, где 1 установочная рама, 2 - направляющая, 3 - центратор, 4 - лазерный сканирующий модуль, 5 - поверхность печи; планшет для управления машиной не показан.

Рама 1 крепится к торцу печи 5. Направляющая 2 проходит вдоль оси печи и с одной стороны опирается на раму 1, а с другой - на центратор 3. Сам центратор устанавливается на коническую поверхность участка печи. Сканирующий лазерный модуль 4 размещается на направляющей 2.

Машина работает следующим образом:

По команде с планшета лазерный датчик сканирующего модуля 4 приводится во вращение, а сам модуль перемещается по направляющей 2. Лазерный датчик измеряет расстояние до поверхности печи. Полярные координаты точек поверхности печи (расстояние до поверхности, измеренное лазерным датчиком и угол поворота датчика, измеренный встроенным энкодером),

синхронизированные с линейным положением модуля, передаются в компьютер. Программа строит 3D-модель внутренней поверхности, по которой рассчитываются требуемые геометрические параметры и степень износа. Видео демонстрацию работы машины можно посмотреть здесь:

https://www.youtube.com/watch?v=_mCpbwEsgdU

7.1. Лазерный сканирующий модуль

Основные узлы лазерного сканирующего модуля показаны на рисунке, его габаритные размеры показаны на рисунках ниже:

где:

1 - несущая втулка;

2, 3 - системы колес, установленные на втулке 1. Одно из колес оснащено энкодером (не показан) для контроля линейного положения модуля;

- 4 блок линейного перемещения;
- 5 блок вращения;

6 - лазерный датчик, установленный на блоке 5;

7, 8 - аккумуляторные батареи блоков 4 и 5 соответственно;

- 9, 10 индикаторы заряда батарей;
- 11, 12 кнопки контроля индикации заряда;
- 13, 14 кнопки включения питания;
- 15, 16 антенны Wi-Fi;
- 17, 18 концевые датчики;
- 19, 20 ручки для переноски модуля.

7.2. Установочная рама

Основные элементы установочной рамы показаны на рисунке ниже.

где:

1 - складные ноги;

2 - винты крепления к торцу печи;

3 - винт регулировки верхней части разрезной призмы для установки направляющей;

4 - четыре винта крепления сканирующего модуля;

5, 6 - калибровочные блоки;

7 - съемный стапель;

8 - винт крепления стапеля.

7.3. Направляющая и центратор

Вся направляющая собирается из трех звеньев, на одном из торцов направляющей устанавливается центратор. Принцип сборки поясняется рисунком:

7.4. Планшет

Основные технические характеристики планшета:

Элемент	Параметр	Значение
Архитектура	CPU	Intel cherry trail Z8350, 1.44Ghz- 1.92GHz
	OS	Windows 10 pro
	RAM/ROM	4GB+64GB
Дисплей	Size	10,1"
	Resolution	1920x1200
Тач-панель	Touch type	Capacitive
Интерфейсы	Туре-А	USB2.0 x1
	Туре-А	USB.0 x1
	MicroUSB	x1
	RJ45 Ethernet	10/100/1000M x1
	DB9 RS232	9-pin serial port x1
	DC power interface	DC 12V 2A x1

Элемент	Параметр	Значение
Степень защиты	Degree of protection	Waterproof IP65, but in fact is IP67 design. Drop 1.2m, 6 sides
	Certification standards	Military 810G. EU CE, US FCC
	Operating Temperature	-20°C60°C
Встроенная батарея	Battery type	Built in removable Li-ion Polymer Battery
	Rated capacity	10500 mAh
Габариты	Dimensions	смотри рисунок ниже

8. Комплектность поставки

Наименование	Количество
Лазерный сканирующий модуль	1
Индустриальный планшет со встроенными WiFi-модулями	1
Зарядное устройство для индустриального планшета	1
Установочная рама	1
Винт регулировки верхней части разрезной призмы для установки направляющей	1
Винт крепления сканирующего модуля	4
Съемный стапель	1
Винт крепления съемного стапеля	1
Звено направляющей переднее	1
Звено направляющей среднее	1
Звено направляющей заднее	1
Центратор	1
Гайка крепления центратора	1
Аккумуляторы Bosh GBA 12V 3.0 Ah	4
Зарядное устройство Bosh GBA 12V 3.0A	1

Наименование	Количество
Конвертер Dayton THG-150S	1
Защитный кейс 670х508х355	1
Защитный кейс 1189х405х160	1
Ящик деревянный 825х725х200	1
Ящик деревянный 1300х500х220	1
Ключ рожковый 19 мм	1
Ключ рожковый 13 мм	1
Ключ шестигранный 4 мм	1
Ключ шестигранный 5 мм	1
Руководство по эксплуатации	1
Wi-Fi-USB адаптер (опция для ПК)	2 (опционально)

Программное обеспечение состоит из следующих пакетов:

RF096740_Desktop_Win64_v1_11_2022_11_03 *	Сервисная программа для настольного ПК. Полнофункциональная версия, предназначенная для управления системой, просмотра и обработки измеренных данных. ЗАМЕЧАНИЕ: управление системой от ПК возможно только при поставке Wi-
	ГI-USB адаптеров.
RF096740_Tablet_Win64_v1_11_2022_11_03*	Сервисная программа для планшета. Адаптированнная версия, предназначенная для управления системой, сбора и первичного просмотра измеренных данных.
CDM v2.12.36.4 WHQL Certified	FTDI-драйвер виртуального COM-порта.

* При обновлении ПО номер и дата версии отличаются от указанной выше.

9. Пример обозначения при заказе

RF096.Burner-IDmin/IDmax-L

Символ	Описание
IDmin/IDmax	Диапазон измеряемых внутренних диаметров, мм.
L	Диапазон глубины сканирования, мм.

Примечание: погрешность измерения параметров оговаривается отдельно.

10. Подготовка к работе

Подготовка машины к работе заключается в сборке ее узлов и размещении в печи для сканирования. Последовательность сборки:

- 1. Закрепить установочную раму на торце печи с помощью 4-х винтов через штатные отверстия, расположенные по окружности торца печи.
- 2. Закрепить стапель на установочной раме.
- 3. Разместить на стапеле сканирующий модуль.
- 4. Зафиксировать сканирующий модуль на раме с помощью 4-х винтов.
- 5. Снять стапель.
- 6. Продвинуть первое звено направляющей через опорную призму установочной рамы и несущую втулку сканирующего модуля.
- 7. Закрепить на торце первого звена центратор.
- 8. Присоединить второе звено направляющей и продвинуть направляющую вглубь корпуса печи.
- 9. Присоединить третье звено и продвинуть направляющую до заклинивания центратора в конусной поверхности.

- 10. Зафиксировать направляющую в призме, опустив верхнюю часть призмы и зажав ее винтом.
- 11. Освободить сканирующий модуль, открутив 4 винта, крепящих его к установочной раме.
- 12. Включить питание блока вращения и блока линейного перемещения.
- 13. Проверить уровень заряда батарей, при необходимости установить свежезаряженные.

Машина готова к работе.

11. Сервисная программа

11.1. Системные требования

Операционная система	Windows 10 и выше
ОЗУ	8 ГБ и более
Разрешение монитора	1280х1024 и выше
Поддержка OpenGL	Версия 4.0 и выше
USB	Два свободных слота USB 2.0 и выше

11.2. Настройка настольного ПК (Desktop)

- 1. Установите сервисную программу. Для этого распакуйте архив **RF096740_Desktop_Win64_v1_11_2022_11_03.zip** в рабочую папку.
- Настройте виртуальные СОМ-порты для WiFi адаптеров (при их наличии). Для этого по очереди вставьте каждый адаптер в свободный порт USB и выполните следующие действия:
 - а. Распакуйте архив CDM v2.12.36.4 WHQL Certified.zip во временную папку.
 - b. Запустите Диспетчер устройств (Device Manager).
 - c. Кликните правой кнопкой мыши на пункте Other Devices > USB Serial Port и выберите пункт меню Update driver.

Cancel

d. В появившемся диалоге выберите пункт Browse my computer for drivers.

How do you want to s	earch for drivers?	
→ <u>S</u> earch automatic Windows will search ye your device.	ally for drivers our computer for the best available driv	/er and install it on
→ B <u>r</u> owse my comp Locate and install a dri	uter for drivers ver manually.	

е. В появившемся диалоге нажмите кнопку **Browse**, выберите путь к временной папке, в которую был распакован FTDI-драйвер, и нажмите кнопку **Next**.

	×
🗧 📱 Update Drivers - USB Serial Port	
Browse for drivers on your computer	
Search for drivers in this location: D:_temp\CDM v2.12.28 WHQL Certified > Browse Include subfolders	
→ Let me pick from a list of available drivers on my computer This list will show available drivers compatible with the device, and all drivers in the same category as the device.	
Next	Cancel
f. После завершения установки FTDI-драйвера нажмите кн	опку Close .

← Update Drivers - USB Serial Port (COM5)

Windows has successfully updated your drivers

Windows has finished installing the drivers for this device:

 \times

g. Нажмите правой кнопкой мыши на соответствующий порт в группе Ports (COM & LPT) и выберите пункт меню Properties.

h. В появившемся диалоге перейдите на вкладку Port Settings и нажмите кнопку Advanced.

USB Serial Port (COM5) Properties	×
General Port Settings Driver Details Events	
Bits per second: 9600 ~ Data bits: 8 ~	
Panty: None ~	
Stop bits: 1 ~	
Flow control: None ~	
Advanced Restore Defaults	1
OK Cance	ł

i. Установите значение Latency Timer равным 1, параметры Receive и Transmit равными 4096, и нажмите кнопку OK.

Advanced Settings for COM5		? ×
COM Port Number: COM5 ~		ОК
USB Transfer Sizes Select lower settings to correct performance problems at low bau Select higher settings for faster performance. Receive (Bytes):	ıd rates.	Cancel Defaults
Transmit (Bytes):	Maaillanaa Ooliaa	
Select lower settings to correct response problems.	Serial Enumerator Serial Printer	
Latency Timer (msec):	Cancel If Power Off Event On Surprise Removal	
Minimum Read Timeout (msec): 0 ~	Set RTS On Close Disable Modem Ctrl At Startup Enable Selective Suspend	
Minimum Write Timeout (msec):	Selective Suspend Idle Timeout (secs):	5 🗸

j. Закройте диалог USB Serial port properties, нажав на кнопку OK.

USB Serial Port (COM5) Properties	×
General Port Settings Driver Details Events	
Bits per second: 9600 ✓ Data bits: 8 ✓ Parity: None ✓ Stop bits: 1 ✓	
Flow control: None ~	
<u>A</u> dvanced <u>R</u> estore Default	5
OK Canc	el

k. Закройте Диспетчер устройств.

11.3. Настройка планшета (Tablet)

Внимание.

Производитель инспекционной машины выполнил все необходимые настройки планшета, входящего в комплект поставки.

Пользователю не нужно дополнительно производить никаких настроек.

Если планшет в процессе эксплуатации сбрасывается до заводских настроек, то необходимо настроить конфигурацию планшета в следующем порядке:

- 1. Установите сервисную программу. Для этого распакуйте архив **RF096740_Tablet_Win64_v1_11_2022_11_03.zip** в рабочую папку. Создайте и скопируйте ярлык на рабочий стол планшета.
- 2. Выполните настройку виртуальных СОМ-портов (см. <u>Настройка</u> настольного ПК (Desktop)).
- Установите последнюю версию Microsoft Visual C++ Redistributable Package (<u>https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170</u>).
- 4. Включите блокировку поворота изображения (Display Settings, Rotation Lock = On).
- 5. Выключите таймеры автоматической блокировки экрана и перехода в спящий режим:
 - a. Personalize Lock Screen Screen Timeout settings On Battery Power, turn off after = Never;
 - b. Personalize Lock Screen Screen Timeout settings On Plugged in, turn off after = Never;
 - c. Personalize Lock Screen Sleep On Battery Power, PC goes to sleep after = Never;

- d. Personalize Lock Screen Sleep On Plugged in, PC goes to sleep after = Never;
- 6. Рекомендуется настроить режим гибернации при нажатии на кнопку выключения питания планшета.

11.4. Запуск сервисной программы

На настольном компьютере запустите файл RF096740_DesktopDemo.exe. На планшете запустите файл RF096740_TabletDemo.exe.

11.5. Главное окно сервисной программы

Все функции сервисной программы доступны из главного окна с помощью одного или двух кликов мыши.

Существует две версии сервисной программы - Desktop-версия и Tabletверсия.

Desktop-версия предназначена для работы на персональном компьютере с большим размером монитора и предоставляет все возможности по просмотру и обработке измерений. Кроме того, Desktop-версия может быть использована и для управления системой при подключении к ПК двух Wi-Fi-USB адаптеров (поставляется по отдельному заказу). Главное окно приложения Desktop-версии сервисной программы:

Tablet-версия адаптирована для установки на планшет. Она предоставляет все возможности для управления процессом измерений и для предварительного просмотра результатов сканирования. Главное окно приложения Tablet-версии сервисной программы:

Главное окно разделено на следующие группы:

- 1. Language. Выбор языка пользовательского интерфейса.
- 2. Device. Подключение и отключение сервисной программы к системе.
- 3. Motion. Ручное управление системой линейного перемещения.
- 4. **Measure**. Задание параметров сканирования и управление процессом измерения.
- 5. Session. Сохранение, загрузка и экспорт данных сканирования в различные форматы.
- 6. **Measurement list**. Отображение списка выполненных измерений и выбор отдельного измерения для детального просмотра.
- 7. Status. Отображение текущего режима работы сервисной программы.
- 8. Cross section. Отображение поперечного сечения объекта в заданной позиции.
- Longitudinal section. Отображение продольного сечения объекта заданной плоскостью.
- 10. 3D View. Отображение отсканированной 3D модели.

Команды управления активируются нажатием на соответствующую кнопку. Некоторые кнопки защищены от случайного нажатия. Перед тем как нажать на такую кнопку, нужно снять защиту. В качестве примера на рисунке ниже изображена кнопка **Disconnect** с не снятой защитой (а) и со снятой защитой (b).

11.6. Выбор языка пользовательского интерфейса

Выберите желаемый язык пользовательского интерфейса из выпадающего списка в группе Language, как показано на рисунке ниже. Сервисная программа сохраняет выбранный язык. При следующем запуске сервисная программа отображает пользовательский интерфейс на выбранном языке.

-Language	
English	•
English	-
_ Japanese	
	Connect

11.7. Подключение и отключение машины

Для установки соединения сервисной программы с инспекционной машиной выполните следующие действия:

- 1. Включите питание инспекционной машины и питание планшета.
- 2. Убедитесь в том, что оба USB-коннектора подключены к USB-слотам планшета.
- 3. Запустите исполняемый файл RF096740_TabletDemo.exe.
- 4. Нажмите кнопку Connect.

Device -		
	Connect	

Для отключения сервисной программы от инспекционной машины выполните следующие действия:

1. Снимите защиту и нажмите кнопку **Disconnect**.

_De	vice
☑	Disconnect

2. Выключите питание системы.

11.8. Ручное управление системой перемещения

После завершения сканирования сервисная программа автоматически перемещает сканирующий модуль в начальную позицию. В некоторых случаях, например, при аварийном отключении внешнего питания, этого не происходит. Поскольку управляющие алгоритмы исключают возможность самопроизвольного движения частей системы, пользователь должен сформировать команду на перемещение сканирующего модуля в начальную позицию. Для этого выполните следующие действия:

- 1. Подключите сервисную программу к машине (см. <u>Подключение и</u> отключение машины).
- 2. Снимите защиту и нажмите кнопку Move to Initial Position.

M	otion
◄	Move to Initial Position

11.9. Калибровка машины

Самокалибровка машины выполняется автоматически перед каждым измерением.

12. Сканирование объекта

Для сканирования объекта выполните следующие действия:

- 1. Подготовьте инспекционную машину к работе (см. <u>Подготовка к работе</u>).
- 2. Подключите сервисную программу к машине (см. <u>Подключение и</u> отключение машины).
- 3. Убедитесь в том, что сканирующий модуль находится в начальной позиции (см. <u>Ручное управление системой перемещения</u>).
- 4. Если необходимо продолжить сохраненную ранее сессию, то загрузите ее (см. <u>Сохранение, чтение и экспорт данных</u>).
- 5. Введите параметры сканирования, а именно, **Начальную** и **Конечную** позиции сканирования, а также **Шаг** сканирования, разблокируйте и нажмите кнопку **Start**.

Measure	
Comment	
Measure 1	
Begin position, mm	
End position, mm 2000 📩	
Step, mm 5 🛨	
Start	

- 6. После нажатия на кнопку Start машина включает датчики и сначала производится сканирование калибровочных блоков, а затем сканирование объекта в соответствии с введенными параметрами. Сервисная программа отображает ход сканирования в графической части главного окна.
- После того как сканирование завершено, сервисная программа добавляет данные измерений в текущую сессию. В навигационной панели появляется соответствующая строка, содержащая дату и время сканирования, а также комментарий пользователя.

Time	Description		
2022-10-13 09:31:49	from 1020 to 1720 pitch 1 : FF. Defects		
2022-11- 4 09:59:11	from 0 to 2000 pitch 15 : Measure 1		
2022-11- 4 10:44:44	from 0 to 2000 pitch 15 : Measure2		

- 8. При необходимости выполните новое сканирование, повторив шаги 5-7.
- 9. После завершения всех измерений сохраните сессию в файл (см. Сохранение, чтение и экспорт данных).
- 10. Отключите сервисную программу от инспекционной машины.

13. Просмотр данных

Панель навигации отображает результат сканирования текущей сессии.

- В графической части главного окна отображает 3D-модель отсканированного объекта в трех видах (см. рисунок ниже):
 - 1. Продольное сечение. На горизонтальной оси координаты вдоль объекта, вертикальная ось координаты в радиальном направлении.
 - 2. Поперечное сечение. Сечение профиля объекта показано в радиальной системе координат. Здесь же показаны результаты измерения в данном сечении, а именно, средний диаметр **Dave**, минимальный диаметр **Dmin**, максимальный диаметр **Dmax**, овальность **Ovality**, округлость **Circularity**.
 - 3. 3D-вид.

Сервисная программа предоставляет следующие возможности при просмотре данных сканирования:

- 1. Для выбора определенного измерения кликните правой кнопкой мыши по соответствующей строке в панели навигации.
- Для просмотра фрагмента 3D-модели, ограниченного двумя сечениями, в окне продольного разреза с помощью мыши переместите левую и правую границы отображения 3D-модели (**3D model display boundaries**) в желаемые положения.
- 3. Для изменения угла просмотра 3D-модели, наведите курсор мыши на окно 3D-вида, нажмите правую кнопку и перемещайте курсор мыши до тех пор, пока модель не будет повернута на требуемый угол.
- 4. Для просмотра поперечного сечения объекта в заданной позиции в окне продольного сечения переместите линию поперечного сечения (**Cross section line**) с помощью курсора мыши в требуемое положение.
- 5. Для просмотра продольного сечения объекта вдоль определенной плоскости в окне поперечного сечения поверните линию продольного сечения (Longitudinal section line) с помощью курсора мыши на требуемый угол.

- 6. Для автоматического просмотра продольного и поперечного сечения в любой точке, наведите курсор мыши на требуемую точку в окне 3D-вида и дважды нажмите левую кнопку мыши.
- 7. Используйте переключатели в верхней части окна 3D-вида для того, чтобы выбрать
 - а. Points. 3D-изображение отображается как облако точек.
 - b. Zero model. Отображение поверхности эталонной поверхности.
 - с. **Difference**. Отображение цветовым кодом разницы между текущим измерением и эталонной моделью.

Навигация в окне 3D-вида осуществляется с помощью мыши следующим образом:

- 1. Вращение колеса мыши "от себя" увеличение масштаба изображения.
- 2. Вращение колеса мыши "на себя" уменьшение масштаба изображения.
- 3. Перемещение курсора мыши с нажатой левой кнопкой вращение изображения.
- 4. Перемещение курсора мыши с нажатой правой кнопкой перемещение изображения вдоль оси вращения.

14. Сохранение, чтение и экспорт данных

Группа кнопок **Session** (см. рисунок ниже) обеспечивает возможность управления данными сканирования.

Session	
	Save
	Load
	Clear
	Export to CSV
	Export to STL

- 1. Для сохранения сессии, нажмите кнопку **Save** и выберите в появившемся диалоге путь к файлу сессии. Сервисная программа сохраняет данные сессии в бинарный файл **rfs**.
- 2. Для просмотра сохраненной сессии или для продолжения измерений разблокируйте и нажмите кнопку **Load**, выберите в появившемся диалоге путь к требуемому файлу.
- 3. Для удаления всех измерений в текущей сессии разблокируйте и нажмите кнопку **Clear**. Будьте осторожны, удаленные данные невозможно будет восстановить, если они не были сохранены в файл.
- 4. Для экспорта текущего измерения в файл формата CSV, нажмите кнопку **Export to CSV** и выберите в появившемся диалоге путь к файлу.
- 5. Для экспорта текущего измерения в файл формата STL, нажмите кнопку **Export to STL** и выберите в появившемся диалоге путь к файлу. Обратите внимание, что внешняя поверхность объекта будет сохранена в файл _outer.stl, а внутренняя поверхность в файл _inner.stl.

15. Использование эталонной модели

В качестве эталонной модели могут быть использованы:

- 1. модели, созданные в системах автоматизированного проектирования (например, SolidWorks),
- 2. модели, полученные путем сканирования данной инспекционной машиной.

Эталонная модель должна быть сохранена в STL-файл.

15.1. Сохранение текущего сканирования в качестве нулевой модели

Для того, чтобы сохранить текущее сканирование в качестве нулевой модели, необходимо:

1. В окне продольного сечения установите желаемые **3D Display boundaries** (см. <u>Просмотр данных</u>).

2. Сохраните выбранную область в качестве нулевой модели, нажав кнопку **Export to STL** (см. <u>Сохранение, чтение и экспорт данных</u>).

15.2. Загрузка нулевой модели

- 1. Выполните или откройте сохраненное ранее измерение.
- 2. Нажмите кнопку **Open** в группе **Select zero model**, укажите файл формата STL, установите галочку **Zero Model** в группе **Show**.

Select zero model	–Zero model alignm	ent				Show		
Open	Automatic	Model	Cross cut	Turn X	Turn Y	Points	🔽 Zero model	Difference

3. В окне 3D-вида появится изображение нулевой модели, окрашенное в серый цвет.

15.3. Совмещение нулевой и отсканированной модели. Ручной режим

Совмещение нулевой модели с отсканированной выполняется с помощью функций, доступных из группы кнопок **Zero model alignment**, и с помощью мыши в окнах продольнольного и поперечного сечения.

Zero model alignm	ent			
Automatic	Model	Cross cut	Turn X	Turn Y

Для совмешения нулевой модели с моделью, полученной сканированием, выполните следующую последовательность действий:

- 1. При необходимости поверните нулевую модель на 90 градусов в вертикальной плоскости, нажав кнопку **Turn X**.
- 2. При необходимости поверните нулевую модель на 90 градусов в горизонтальной плоскости, нажав кнопку **Turn Y**.
- 3. Нажмите клавишу **Ctrl**, наведите мышь на контур нулевой модели в окне продольного сечения, нажмите левую кнопку мыши, выполните "грубое" совмещение положения нулевой модели по горизонтали.
- 4. Нажмите клавишу **Shift**, наведите мышь на контур нулевой модели в окне продольного сечения, нажмите левую кнопку мыши, выполните "грубое" совмещение положения нулевой модели по вертикали.

- 5. Нажмите клавишу **Ctrl**, наведите мышь на контур нулевой модели в окне поперечного сечения, нажмите левую кнопку мыши, выполните перенос положения нулевой модели.
- 6. Нажмите клавишу **Shift**, наведите мышь на контур нулевой модели в окне поперечного сечения, нажмите левую кнопку мыши, выполните поворот нулевой модели.

7. При необходимости повторяйте 3-6.

15.4. Совмещение нулевой и отсканированной модели. Полуавтоматический режим

Совмещение нулевой модели с измерением в полуавтоматическом режиме дает хорошие результаты только в том случае, если обе модели совмещены вдоль продольной оси и имеют правильную форму.

Совмещение нулевой модели с измерением выполняется с помощью функций, доступных из группы кнопок Zero model Aligning.

Automatic Model Cross cut Turn X Turn Y	-Zero model alignm	ent			
	Automatic	Model	Cross cut	Turn X	Turn Y

Если продольная ось нулевой модели и измерения параллельны, то:

- 1. Выберите поперечное сечение, в котором контур нулевой модели и измерения имеют наиболее правильную форму.
- 2. Нажмите кнопку **Model**, алгоритм выполнит параллельный перенос нулевой модели, наилучшим образом совместив контуры измерения и нулевой модели.

Если продольные оси нулевой модели и измерения не параллельны, то:

- 1. Выберите на левом краю измерения поперечное сечение, в котором контур нулевой модели и измерения имеют наиболее правильную форму.
- 2. Нажмите кнопку **Cross Cut**, алгоритм наилучшим образом совместит контуры измерения и нулевой модели на левом краю.
- Выберите на левом краю измерения поперечное сечение, в котором контур нулевой модели и измерения имеют наиболее правильную форму.
- 4. Нажмите кнопку **Cross Cut**, алгоритм наилучшим образом совместит контуры измерения и нулевой модели на правом краю.

Допускается комбинированное использование функции Model и Cross Cut.

В том случае, когда и нулевая модель и измеренная на всех поперечных срезах имеют правильную форму (даже если продольные оси непараллельны), нажмите кнопку **Automatic**. Программа автоматически совместит нулевую модель и измерение.

15.5. Просмотр разницы нулевой и отсканированной моделей

Для просмотра разницы между нулевой моделью и измерением в цветовом коде в окне 3D-вида, нажмите галочку **Difference** в группе **Show**.

В окнах продольного и поперечного сечения в цифровой форме отображается разница (**Diff**) между нулевой моделью и измерением в выбранном сечении.

Для настройки цветовой шкалы дважды кликните по ней левой кнопкой мыши.

Отредактируйте цветовую шкалу в появившемся диалоге:

- 1. Дважды щелкните по ячейке чтобы изменить ее значение.
- 2. Чтобы добавить или удалить ячейку щелкните правой кнопкой мыши по ячейке, выберите в появившемся меню действие.
- 3. Нажмите **Apply** чтобы применить правки или **Cancel**, чтобы отменить правки.

16. Техническая поддержка

Техническая поддержка, связанная с некорректной работой машины и проблемами с настройками, осуществляется бесплатно компанией РИФТЭК. Запросы по технической поддержке следует направлять на адрес <u>support@riftek.com</u> или по телефону +375-17-3573657.

17. Гарантийное обслуживание и ремонт

Гарантийный срок эксплуатации инспекционной машины – 24 месяца со дня поставки.

18. Изменения

Дата	Версия	Описание	
11.11.2022	1.0.0	Исходный документ.	