

СИСТЕМА КОНТРОЛЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЛЕНТ

Серия РФ089

Руководство по эксплуатации

Логойский тракт, 22 г. Минск 220090, Республика Беларусь тел/факс: +375 17 281 36 57 info@riftek.com www.riftek.com

Содержание

1. Меры предосторожности	3
2. Электромагнитная совместимость	3
3. Лазерная безопасность	3
4. Назначение	3
5. Устройство и принцип работы	4
6. Основные технические характеристики	5
7. Габаритные и присоединительные размеры	6
7.1. Измерительные модули.	6
7.2. Устройство индикации и управления	7
8. Структурная схема	7
9. Схема кабельных соединений	8
10. Программное обеспечение	8
10.1. Основные функции	8
10.2. Измерения	8
10.3. Калибровка	.10
10.3.1. Калибровка микрометров для измерения толщины ленты	.10
10.3.2. Калибровка термометров	.11
10.4. Настройки	.11
10.5. Журнал измерений	.12
11. Использование по назначению	.14
11.1. Подготовка к использованию	.14
11.1.1. Внешний осмотр	.14
11.1.2. Установка на оборудование	.14
11.1.3. Включение системы	.14
11.1.4. Калибровка системы	.14
11.1.5. Настройка параметров системы	.15
11.1.6. Проверка работоспособности системы	.15
11.2. Работа с системой	.15
12. Техническое обслуживание	. 15
12.1. Общие указания	.15
12.2. Меры безопасности	.15
12.3. Порядок технического обслуживания	.15
12.3.1. Ежедневные работы по техническому обслуживанию	.15
12.3.2. Регулярные работы по техническому обслуживанию	.15
12.3.3. Ежегодные работы по техническому обслуживания	.15
12.4. Проверка работоспособности	.16
13. Гарантийные обязательства	.16

1. Меры предосторожности

- Используйте напряжение питания и интерфейсы, указанные в спецификации на систему.
- При подсоединении/отсоединении кабелей к устройству индикации питание устройства должно быть отключено.
- Не используйте систему вблизи мощных источников света.
- Для получения стабильных результатов после включения питания необходимо выдержать порядка 20 минут для равномерного прогрева микрометров, входящих в систему.
- Элементы системы должны быть заземлены и присоединяться к заземляющей шине посредством отдельного ответвления.

2. Электромагнитная совместимость

Система разработана для использования в промышленности и соответствуют следующим стандартам:

- EN 55022:2006 Оборудование информационных технологий. Характеристики радиопомех. Пределы и методы измерений.
- EN 61000-6-2:2005 Электромагнитная совместимость. Общие стандарты. Помехоустойчивость к промышленной окружающей среде.
- EN 61326-1:2006 Электрооборудование для измерения, управления и лабораторного использования. Требования к электромагнитной совместимости. Общие требования.

3. Лазерная безопасность

В оптических микрометрах системы установлен светодиод или полупроводниковый лазер с непрерывным излучением и длиной волны 660 нм. Максимальная выходная мощность лазера <0,2 мВт. Микрометры относятся к классу 1 лазерной безопасности. На корпусе микрометров размещена предупреждающая этикетка.

При работе с микрометром необходимо соблюдать следующие меры безопасности:

- не смотрите в луч длительный период времени
- не разбирайте микрометр

4. Назначение

Система предназначена для контроля геометрических параметров (ширина и толщина), а также температуры лент, в частности, упаковочных стрэп-лент в процессе их производства.

Область применения системы - крупносерийное производство. Место установки – производственная линия.

Технические характеристики системы могут быть изменены под конкретную задачу.

5. Устройство и принцип работы

Для контроля геометрических параметров лент используются теневые оптические микрометры.

Принцип контроля ширины ленты поясняется рис 1.

Микрометр состоит из двух блоков – излучателя и приемника. Излучение светодиода 1 коллимируется объективом 2. При размещении ленты в области коллимированного пучка его теневое изображение сканируется линейкой фотоприемников 3. По положению теневых границ ленты процессор 4 рассчитывает ширину ленты.

Рисунок 1

Принцип контроля толщины ленты поясняется рис.2

Рисунок 2

Толщина ленты рассчитывается как разность положения теневых границ от ленты и вала. Положение теневой границы вала контролируется отдельным микрометром.

Устройство системы контроля поясняется рис. 3

Система содержит группу из 6-ти оптических микрометров 1 для одновременного контроля ширины 6-ти лент, группу из девяти оптических микрометров 2, шесть из которых (основные микрометры) предназначены для одновременного контроля толщины 6-ти лент, а три (вспомогательные микрометры) – для контроля положения поверхности вала. Все микрометры объединены по интерфейсу RS485 в коммутационном блоке 3, включающем также источник питания всей системы. Система содержит также контроллер 4 (устройство индикации), предназначенный для обработки данных с микрометров, индикации результата и накопления данных.

Рисунок 3

6. Основные технические характеристики

Параметр	Значение
Модель оптических микрометров	РФ651-25
Модель устройства индикации	РФ307
Модель датчиков температуры	OMEGA OS-136-1-MA
Количество одновременно контролируемых лент	6
Количество точек контроля температуры	3
Диапазон контроля толщины ленты, мм	0,0220
Погрешность контроля толщины ленты, мкм	±5
Диапазон контроля ширины ленты, мм	±0,220
Погрешность контроля ширины ленты, мкм	±10
Максимальная скорость измерений, измерений/с	2000
Напряжение питания	трехфазная сеть переменного тока с частотой (50 ± 1) Гц, номинальным напряжением 220/380В с допускаемым отклонением напряжения ±10 %.
Потребляемая мощность, Вт	4
Климатическое исполнение установки	УХЛ, категория размещения 4
Условия эксплуатации	Температура окр. воздуха: +1+35 [°] C Отн. влажность воздуха при 25 [°] C 65

Система контроля геометрических параметров лент [Версия документа 1.0] 08 декабря 2014

7. Габаритные и присоединительные размеры

7.1. Измерительные модули.

Размеры измерительных модулей, а также их установка на оборудовании показаны на рисунках 4 (вид сбоку) и 5 (вид спереди).

7.2. Устройство индикации и управления

Устройство РФ307 предназначено для обработки данных с микрометров, индикации результата и накопления данных.

Габаритные размеры устройства показаны на рисунке 6.

8. Структурная схема

Структурная схема системы показана на рис. 7

Оптические микрометры РФ651 объединены в сеть по интерфейсу RS485. В эту же сеть, через АЦП включены датчики температуры. Информация со всех микрометров и датчиков температуры поступает в устройство индикации и управления РФ307

Рисунок 7

9. Схема кабельных соединений.

Схема кабельных соединений показана на рисунке 8.

Рисунок 8

Где 1 – блок питания, 2 – устройство индикации, 3,6 – кабель RS485, 4 - коммутационный блок, 5 – блок питания, 7 – микрометр РФ651 (15 штук), 8 – датчик температуры (3 штуки).

(!) Питание системы при монтаже кабельных соединений должно быть отключено.

10. Программное обеспечение

10.1. Основные функции

Программа обеспечивает:

- прием и анализ данных от микрометров и датчиков температуры с отображением и сохранением результатов измерений;
- индикацию выхода геометрических параметров лент за установленные допустимые значения;
- калибровку подсистемы измерения толщины ленты;
- настройку системы;
- самодиагностику системы.

10.2. Измерения

После включения питания устройства РФ307 производится загрузка программы и появляется основное рабочее окно (рисунок 9):

Рисунок 9

Для запуска процесса измерения необходимо нажать кнопку **Start**. В левой верхней части окна отображаются результаты измерения ширины лент, в правой верхней – толщины, в центральной части – температуры.

Ширина лент – результат прямых измерений соответствующими микрометрами.

Толщина лент – результат косвенных измерений, вычисляется следующим образом:

Тл=(Пл-Пвк) - (Пвт-Пвк),

где Пл – текущее положение верхней поверхности ленты (показания основных микрометров, см. п. 5.),

Пвк – положение поверхности вала (основные микрометры) при калибровке системы (см. п. 10.3.),

Пвт – текущее положение поверхности вала (показания вспомогательных микрометров, см.п.5),

Пвк – положение поверхности вала при калибровке (вспомогательные микрометры).

Для контроля текущих показаний всех девяти микрометров контроля толщины нажать кнопку **Display**.

При выходе текущего показания за допуск соответствующее измерение выделяется оранжевым цветом (рисунок 10). Процедура установки допусков описана в п. 10.4.

Если микрометр не отвечает на запросы, он выделяется красным цветом.

Результаты измерений сохраняются в файл БД SQLite с именем keep.db в корне флэш-накопителя устройства индикации, см. п.10.5.

Рисунок 10

10.3. Калибровка

10.3.1. Калибровка микрометров для измерения толщины ленты Процедура калибровки:

- удалить ленты с вала
- запустить процесс измерения, нажав кнопку Start
- открыть меню калибровки: Settings > Set etalon/Sw. State (рисунок 11)
- выбрать номера калибруемых микрометров (номера 7-15 в настройках соответствуют 9-ти микрометрам подсистемы контроля толщины лент)

• убедившись, что выбран режим **Etalons** и опция **Set** в поле **Mode**, нажать кнопку **Apply**

Рисунок 11

10.3.2. Калибровка термометров

- остановить процесс измерения, нажав кнопку Stop
- открыть меню калибровки Settings > Calibration (рисунок 12)
- выбрать номер термодатчика (поле Sensor index)

• направить датчик на поверхность с известной температурой, предварительно вписав значение температуры в поле **Temp. 1** или **Temp. 2**, и нажать кнопку **Set**. При успешном выполнении операции появится сообщение **Calibration parameter has been successfully set**. Подробную информацию о работе термодатчиков можно найти в документации OMEGA OS136-1-MA

• выполнить операцию, описанную в предыдущем пункте, для двух разных температур. По нажатию кнопки **Set** предыдущее значение калибровки перезаписывается

Рисунок 12

10.4. Настройки

Всем датчикам в системе присвоены номера (Index) от 1 до 18, где 1-6 номера соответствуют 1-6 датчикам из группы, измеряющей ширину лент, номера 7-15 в настройках соответствуют 1-9 датчикам из группы, измеряющей толщину лент, а 16-18 - трем температурным датчикам. Номера Т1...Т6 обозначают результаты косвенных измерений толщины.

Для выполнения настроек системы войти в меню General.

• в поле **Timeout** устанавливается задержка в миллисекундах между последовательными циклами опроса датчиков

• для установки допусков необходимо выбрать номер датчика в поле **Index** и установить верхнюю и нижнюю допустимую границу в полях **Upper limit** и **Lower limit** соответственно

• для установки номера производственного задания используйте поле **Task Number**

• для разрешения или запрета записи измерений в БД используйте поле Save log

• с помощью полей **Time** и **Date** можно установить системные дату и время.

• в поле **Free space** отображается свободное место на съёмном носителе (micro SD card)

• чтобы применить настройки периода опроса и допусков необходимо нажать **Арр**ју

• чтобы отменить внесенные изменения необходимо нажать Discard

• для добавления/удаления устройств, участвующих в опросе, и калибровки микрометров войти в меню **Set etalon/Sw. State**. Верхняя кнопка одновременно выполняет функцию индикатора и переключения режимов, а именно, **States** – активен режим выбора устройств, участвующих в опросе; **Etalons** – активен режим установки/сброса калибровки микрометров. Воспользуйтесь функцией **States** для отключения устройств, которые не нужно опрашивать во время работы системы. Это необходимо тогда, когда устройство неисправно, либо не используется, что может вызвать большие задержки при опросе, и, следовательно, задержки в работе всей системы. Использование режима **Etalons** описано в пункте 10.3.1

• для установки количества измерений, используемых для расчета среднего значения, используйте поле **Averaging**.

10.5. Журнал измерений

В процессе работы система формирует журнал измерений. Для просмотра журнала измерений войти в меню **Journal** (рисунок 13). Это меню предназначено для просмотра сохраненных на флеш-накопителе измерений, хранящихся в файле БД SQLite с названием keep.db. Каждая запись имеет следующую структуру::

- Тіте время измерения.
- Task номер производственного задания.
- Туре тип измерения (температура, ширина, толщина).
- Measure # номер измерения данного типа. (Соответствует понятию Index, описанном в пункте 10.4).
- Value измеренная/рассчитанная величина.

Для отображения необходимых записей необходимо использовать фильтры:

- Time range –выбор временного диапазона.
- Values range выбор диапазона отображаемых измеренных значений.
- Task номер производственного задания.
- Туре тип измерения (Device значение, полученное от устройства; Thickn. рассчитанная толщина; Temp. температура).
- Measure # номер измерительного устройства, соответствующего типа.

Для того чтобы выполнить запрос для отображения записей, соответствующих выбранным фильтрам, нажмите **Apply**. Для сброса значений фильтров в значения по умолчанию, нажмите **Clear**. Таблица с записями поддерживает верти-

кальную прокрутку, сортировку по столбцам, при нажатии на шапку, и выделение строки. По умолчанию сортировка выполняется по времени: сначала записи, которые были сохранены раньше. Записи из таблицы можно сохранить в корень флешнакопителя в файл с расширением *.csv. В файлах данного расширения столбцы разделяются точкой с запятой. Для сохранения необходимо нажать **Export CSV**. Именем файла будет дата и время в момент сохранения. После сохранения появится сообщение, пример которого изображен на рисунке 14.

8 🗖 🗊	RF sensor					
Time ra	inge: 04/08/2014 0	00:00 -	22/08/2014 16:16	Values range:	8	. 🛛 😣
Num.	Time 🔺	Task	Туре	Measure #	Value	Task
	22-08-2014 10:28		Temperature		1111.00	
2	22-08-2014 10:28	1	Temperature	2	1093.00	Tune
3	22-08-2014 10:28		Temperature		1096.00	Туре
4	22-08-2014 10:28	1	Temperature	1	1111.50	Temp.
	22-08-2014 10:28		Temperature	2	1093.00	Measure #
6	22-08-2014 10:28	1	Temperature	3	1095.50	
	22-08-2014 10:28		Temperature		1111.33	•
8	22-08-2014 10:28	1	Temperature	2	1092.33	Apply
	22-08-2014 10:28		Temperature		1094.67	
10	22-08-2014 10:28	1	Temperature	1	1111.00	Clear
11	22-08-2014 10:28		Temperature	2	1092.00	
12	22-08-2014 10:28	1	Temperature	3	1093.67	
13	22-08-2014 10:28		Temperature		1110.00	Export CSV
14	22-08-2014 10:28	1	Temperature	2	1091.33	
15	22-08-2014 10:28		Temperature		1092.67	Back
16 Records	22-08-2014 10·28 : 594	1	Temperature	1	1109 67	Riftek LLC info@riftek.com

Рисунок 14

ПРИМЕЧАНИЕ. Для ввода значений даты и времени предусмотрены специальные графические компоненты, изображенные на рисунках 15 и 16 соответственно. Для ввода числовых значений предусмотрена клавиатура, рисунок 17.

1301							
 한 🚽 декабря 2014 🔸						Task number	
Mon	Tue	Wed	Thu	Fri	Sat	Sun	Save log
1	2	3	4	5	6	7	On
							Time
8	9	10	11	12	13	14	10:09
							Date
15	16	17	18	19	20	21	10/12/2014
22	23	24	25	26	27	28	Free space 200100761 KB Apply
29	30	31	1	2	3	4	Discard
							Back
5	6	7	8	9	10	11	Riftek LLC

Рисунок 16

7	8	9	×	
4	5	6	≪	≽
1	2	3	0	,

Рисунок 17

При наборе соответствующих значений клавиатура появляется автоматически

11. Использование по назначению

11.1. Подготовка к использованию

Подготовка системы к использованию включает:

- внешний осмотр;
- установку на оборудование;
- включение системы;
- калибровку системы;
- настройку системы.

11.1.1. Внешний осмотр

Перед работой необходимо убедиться в исправности оборудования: проверить состояние кабелей, проводов заземления. Проверить состояние выходных окон микрометров и при необходимости протереть их мягкой тканью.

11.1.2. Установка на оборудование

Выполнить установку машины на оборудование в соответствии с рис. 2-5 настоящего руководства. Выполнить кабельные соединения в соответствии с рис.8.

11.1.3. Включение системы

Подать питание на машину.

11.1.4. Калибровка системы

Выполнить калибровку системы в соответствии с п. 10.3.2 настоящего руководства. Калибровка установки производится:

- еженедельно перед началом работы смены,
- в случае изменения положения системы,

• при изменениях температуры окружающего воздуха (несколько градусов в среднем за сутки по отношению к предыдущим суткам).

11.1.5. Настройка параметров системы

Выполнить настройку параметров в соответствии с п. 10.4. и 10.5.

11.1.6. Проверка работоспособности системы

Для проверки работоспособности системы провести полный цикл контроля геометрических параметров контрольных образцов лент. Проверку работоспособности машины рекомендуется проводить не реже одного раза в месяц.

11.2. Работа с системой

Измерение геометрических параметров лент полностью автоматизировано, и работа с системой сводится к работе с программой.

- запустить программу управления системой
- выполнить подготовку в соответствии с п. 11.1.
- для запуска процесса измерения нажать кнопку Start

12. Техническое обслуживание

12.1. Общие указания

Техническое обслуживание системы проводится с целью обеспечения постоянной готовности её к работе и предупреждения преждевременного выхода из строя. Техническое обслуживание предусматривает профилактические мероприятия, направленные на выявление и устранение дефектов, обеспечение нормальной работы системы при её эксплуатации. Рекомендуется проводить ежедневные, еженедельные и ежегодные работы по техническому обслуживанию.

12.2. Меры безопасности

При техническом обслуживании установки следует соблюдать меры безопасности, изложенные в п.1 настоящего руководства.

12.3. Порядок технического обслуживания

12.3.1. Ежедневные работы по техническому обслуживанию

При ежедневных работах производятся:

- внешний осмотр системы
- проверка комплектности системы,
- проверка отсутствия повреждений элементов конструкции, силовых и измерительных кабелей, индикаторов и разъемов,
- проверка ослабления винтовых соединений и нарушений изоляции,
- перед началом работы при необходимости рекомендуется протереть выходные окна микрометров мягкой сухой тканью.

12.3.2. Регулярные работы по техническому обслуживанию

При регулярных работах необходимо:

 при помощи сухой мягкой безворсовой ткани очистить окна микрометров от загрязнений;

12.3.3. Ежегодные работы по техническому обслуживания

При ежегодных работах необходимо:

• проводить метрологическую поверку микрометров;

12.4. Проверка работоспособности

Проверку работоспособности системы рекомендуется проводить не реже одного раза в начале или в течение смены, для чего необходимо провести полный цикл контроля геометрических параметров контрольных образцов лент (не входит в комплект поставки).

13. Гарантийные обязательства

Гарантийный срок эксплуатации Системы контроля геометрических параметров лент - 12 месяцев со дня ввода в эксплуатацию, гарантийный срок хранения - 12 месяцев.