

ЛАЗЕРНЫЕ СКАНЕРЫ

Серия РФ627, Серия РФ627Smart

Руководство по эксплуатации

Логойский тракт, 22, г. Минск 220090, Республика Беларусь тел/факс: +375 17 357 36 57 info@riftek.com www.riftek.com

Содержание

1. Меры предосторожности	5
2. Европейское соответствие	5
3. Лазерная безопасность	5
4. Назначение	5
5. Устройство и принцип работы	5
6. Варианты исполнения, режимы работы и опции	6
7. Основные технические данные	7
7.1. Общие технические характеристики	7
7.2. Рабочие диапазоны и габаритные размеры	8
8. Пример обозначения при заказе	10
9. Общие требования к установке	11
10. Подключение	11
10.1. Назначение контактов разъемов	. 11
10.2. Кабели	. 12
10.3. Кнопка и индикация	. 13
11. Ethernet-интерфейс и пользовательское ПО	13
12. Настройка сети и включение	13
12.1. Настройка сети	. 13
12.2. Первое включение	. 14
13. WEB-интерфейс	15
14. Поиск сканера в сети и подключение	18
15. Область отображения результатов работы	18
15.1. Элементы управления	. 18
15.2. Режимы отображения	. 19
15.2.1. Режим Profile	. 19
15.2.2. Режим Video	. 20
16. Процедура настройки параметров	20
17. Вкладка Network. Настройка сетевых параметров	21
18. Вкладка General. Настройка общих параметров	22
18.1. Настройка параметров CMOS-сенсора	. 23
18.2. Настройка параметров лазера	. 24
18.3. Настройка качества изображения	. 24
18.3.1. Настройка времени экспозиции и мощности лазера	. 25
18.3.2. Режим нескольких экспозиций и режим EDR	. 25
18.3.3. Режим удаления фонового излучения от посторонних источников	. 26
18.4. Настройка режима ROI	. 27
18.5. Управление потоком данных	. 29
19. Вкладка Processing. Настройки параметров выделения профиля	30
19.1. Pre Processing. Настройки параметров выделения профилей	. 30
19.1.1. Параметр Peak selection mode	. 31
19.2. Post Processing. Фильтрация	. 33
20. Вкладка Triggering. Настройка режимов запуска измерений	34
20.1. Временной цикл работы сканера	. 35
20.2. Структурная схема синхронизации	. 36
20.3. Выбор источника событий синхронизации	. 37
20.4. Настройка синхронизации по внешнему триггеру	. 37
20.4.1. Настройка параметров входов	. 38
20.4.2. Настройка счетчика энкодера	. 38
20.4.3. Примеры настроек	. 39
20.5. Настройка выходов	. 40
21. Вкладка Triggering. Настройка синхронизации нескольких сканеров	41
21.1. Синхронные измерения	. 41
21.2. Асинхронные измерения	. 41
22. Вкладка Dump. Параметры накопленных профилей	42

22.1. Раздел Dump control. Построение 3D моделей	43
22.2. Раздел 3D view. Параметры отображения 3D модели	43
22.3. Раздел Download. Скачивание профилей	44
22.4. Операции с профилями	44
22.4.1. Накопление профилеи во внутреннеи памяти сканера	44
	44
22.4.3. Экспорт накопленных профилеи	45
23. BKJIAJKA System	40
23.1. Paszez Undete	40
	47
23.2.1. Обновление и сохранение внутреннего по	41 10
23.2.2. Обновление калиоровочной таблицы	40 10
	40
23.4. Pagen Logs	วา
24. DKJIddka Silidit	
24.1. OUNCED STITUT-UNOROB // Hapametpob	55
24.1.1. Вкладка Sinait DiockS	04
24.1.2. DKJADKA DIOCK Settings	54
	55
24.2. Создание Sman-функции	50
	50
	. 57
24.2.1.2. Газойение каждого фрагмента на набор аппроксимирующих отрезков и дуг	58
24.2.1.2.1. Аппроксимация отрезками	50 59
	00
24.2.1.3. Эточнение анпроконмирующих отрезков и точек их пересечения	. 01
24.2.2. Otali 2. Hocipoenie i pawa	01
24.2.2.1. Областв отображения результатов	02
24.2.2. Пример построения графа	6/
24.2.0. Rak 510 padotae1	04
24.2.4. Сохрансние и загрузка отпат-функции	66
24.3.1 Типы данных	66
24.3.7. Разделы	00
24.3.2.1 Раздел "Feature detectors"	07
24.0.2.1. Газдел Генцие detectors	73
24.3.2.3 Раздел "Complex shapes"	77
24.3.2.4 Раздел "Math functions"	80
24.3.2.5 Раздел "Converters"	83
24.3.2.6 Раздел "Control"	86
24.3.2.7 Раздел "Input and output"	86
25 Обслуживание при эксплуатации	. 91
26 Возможные неисправности и способы их устранения	
27 Приложение 1 Режим Recovery	
28 Приложение 2 Редактирование битых пикселей	
28. Приложение 2. Редактирование битых пикселей	95
 28. Приложение 2. Редактирование битых пикселей	95 95
 28. Приложение 2. Редактирование битых пикселей	95 95 .97
 Приложение 2. Редактирование битых пикселей	95 95 97 98
 Приложение 2. Редактирование битых пикселей	95 95 97 98 99
 28. Приложение 2. Редактирование битых пикселей	95 95 97 98 99 99
 28. Приложение 2. Редактирование битых пикселей	95 97 98 99 99 99 99
 28. Приложение 2. Редактирование битых пикселей	95 95 97 98 99 99 99 99 99
 28. Приложение 2. Редактирование битых пикселей	95 95 97 98 99 99 99 99 99 99 99
 28. Приложение 2. Редактирование битых пикселей	95 95 97 98 99 99 99 99 99 100 100
 Приложение 2. Редактирование битых пикселей. Приложение 3. Габаритные и установочные размеры сканеров с опциями. 29.1. Пример сканера со сменными защитными окнами, опция EW	95 95 97 99 99 99 99 99 99 100 100

31. Приложение 5. Протокол HND1, версия 1.0	101
31.1. Интерфейс Ethernet - канальный уровень	101
31.2. Описание команд HND1	101
31.2.1. Получение версии протокола	101
31.2.2. Установка интенсивности излучения лазера	101
31.2.3. Установка времени экспонирования кадра сенсором	102
31.2.4. Включение лазера	102
31.2.5. Выключение лазера	103
31.2.6. Установка области интереса (ROI)	103
31.2.7. Получение статуса устройства	103
31.2.8. Установка типа шаблона для поиска шва	105
31.2.9. Получение версии прошивки сканера	105
31.2.10. Получение температуры сканера	105
31.2.11. Запустить поток результатов измерений	106
31.2.12. Остановить поток результатов измерений	107
32. Приложение 6. Смарт-блок "template detector" и редактор шаблонов	
32.1. Назначение и общая информация	108
32.2. Структура шаблона и принцип поиска шаблона в профиле	108
32.3. Редактор пользовательских шаблонов	109
32.3.1. Описание элементов интерфейса	109
32.3.1.1. Область отображения и настройки параметров шаблона	110
32.3.1.2. Область управляющих элементов	110
32.3.1.3. Область визуализации шаблона и его ограничений	111
32.3.2. Порядок работы с редактором шаблонов	112
32.3.2.1. Создание элементов шаблона	112
32.3.2.1.1. Создание элементов шаблона пользователем	112
32.3.2.1.2. Автоматическое создание элементов шаблона	113
32.3.2.2. Создание ограничений для учета формы шаблона	113
32.3.2.2.1. Собственные ограничения	113
32.3.2.2.2. Относительные ограничения	114
32.3.2.3. Добавление ограничений в шаблон	115
32.3.2.4. Создание и настройка вариантов шаблона	117
32.3.3. Пример создания шаблона	118
33. Приложение 7. Смарт-блок "C-script"	
33.1. Назначение и общая информация	125
33.2. Поддерживаемые типы данных	126
33.3. Поддерживаемые методы	127
33.3.1. Базовые методы	127
33.3.2. Специальные методы	127
33.4. Примеры скриптов	128
34. Гарантийное обслуживание и ремонт	
35. Техническая поддержка	
36. Изменения	129

1. Меры предосторожности

- Используйте напряжение питания и интерфейсы, указанные в спецификации на сканер.
- При подсоединении/отсоединении кабелей питание сканера должно быть отключено.
- Не используйте сканеры вблизи мощных источников света.
- Для получения стабильных результатов после включения питания необходимо выдержать порядка 20 минут для равномерного прогрева сканера.
- Сканеры должны быть заземлены.

2. Европейское соответствие

Сканеры разработаны для использования в промышленности и соответствуют следующим Директивам:

- Directive 2014/30/EU (Электромагнитная совместимость).
- Directive 2011/65/EU, "RoHS" category 9 (Ограничение использования опасных и вредных веществ в электрооборудовании и электронном оборудовании).

3. Лазерная безопасность

Сканеры соответствуют классу лазерной безопасности 2М по IEC/EN 60825-1:2014. В сканерах установлен полупроводниковый лазер с длиной волны 660 нм или 405 нм или 450 нм или 808 нм. Максимальная выходная мощность лазера 10 мВт. На корпусе датчиков размещена предупреждающая этикетка:

При работе со сканером необходимо соблюдать следующие меры безопасности:

- не направляйте лазерный луч на людей;
- не разбирайте сканер;
- не смотрите в лазерный луч.

4. Назначение

Лазерные сканеры предназначены для бесконтактного измерения и контроля профиля поверхности, положения, перемещения, размеров, распознавания технологических объектов, построения 3D моделей.

5. Устройство и принцип работы

В основу работы сканера положен принцип оптической триангуляции, см. пояснение на рисунке ниже.

Излучение полупроводникового лазера формируется в виде линии и проецируется на объект. Рассеянное на объекте излучение объективом собирается на двумерной СМОS-матрице. Полученное изображение контура объекта анализируется FPGA и сигнальным процессором, который рассчитывает расстояние до объекта (координата Z) для каждой из множества точек вдоль лазерной линии на объекте (координата X). Сканеры характеризуются следующими параметрами:

- smrZ начало рабочего диапазона по координате Z;
- MR рабочий диапазон по координате Z;
- emrZ дальность по Z конца рабочего диапазона;
- Xsmr рабочий диапазон по координате X в начале рабочего диапазона по Z;

• Xemr – рабочий диапазон по координате X в конце рабочего диапазона по Z.

6. Варианты исполнения, режимы работы и опции

Сканеры доступны в следующих вариантах длины волны лазера:

- на базе красного лазера 660 нм;
- на базе синих лазеров (версия BLUE) 405 нм или 450 нм;
- на базе инфракрасного лазера (версия IR) 808 нм.

Использование различных лазеров обусловлено широким спектром задач сканирования поверхностей. Например, использование синих лазеров вместо традиционных красных существенно расширяет возможности сканеров, в частности, при контроле высокотемпературных объектов, а также органических материалов.

Использование в одной измерительной системе сканеров с различной длиной волны лазера позволяет избежать взаимного влияния сканеров друг на друга и существенно упрощает построение системы. Пример реализации системы: <u>https://youtu.be/9evAlXqrPas</u>

Сканеры могут оснащаться встроенным нагревателем для работы в условиях низких температур. Сканеры могут быть оборудованы системой воздушного (водяного) охлаждения и системой обдува окон.

Возможны два режима работы сканеров в полном рабочем диапазоне: с рабочими частотами не менее 484 Гц (профилей/секунду) и не менее 938 Гц (**DS** режим).

Сканеры поддерживают функцию **ROI**, которая позволяет увеличить быстродействие сканера в ограниченном рабочем диапазоне до 5096 Гц и до 6800 Гц в **DS** режиме.

Версия сканера **Smart** (РФ627Smart) предоставляет возможность проведения измерения геометрических параметров профиля изделий в реальном времени непосредственно в сканере без подключения внешнего компьютера. Анализ, расчеты, измерения, контроль допусков выполняются по алгоритму, созданному пользователем. Для построения алгоритма предлагается простой и наглядный инструмент - граф вычислений. Граф формируется из библиотеки готовых блоков. Различные комбинации блоков и связей между ними позволяют создавать практически неограниченное количество измерения функций и обрабатывать профили любой сложности. Результаты измерений могут быть переданы по различным протоколам (Ethernet/IP, Modbus TCP, UDP), а также на логические выходы сканера для управления исполнительными механизмами и сигнализации годности изделия.

ПРИМЕЧАНИЕ: приобретая сканер РФ627, вы получаете возможность использования всех функций сканера РФ627Smart в течение 100 часов. После окончания этого времени функции передачи и приема результатов измерений к/от внешних устройств будут недоступны. Пробный период может быть продлен по отдельному запросу. Для использования всех функций сканера РФ627Smart неограниченное время необходимо приобрести лицензию (возможно лицензирование отдельных функций). Порядок лицензирования описан в пар. 23.3. "Раздел Licenses".

7. Основные технические данные

7.1. Общие технические характеристики

Быстродействие, точность, разрешение			
Быстродействие (для полного рабочего	485 профилей/с в стандартном режиме		
диапазона), не менее	921 профилей/с в режиме DS		
Максимальное быстродействие (режим ROI)	4884 профилей/с 6379 профилей/с в режиме DS		
Линейность (погрешность), Z ось	±0,05% от диапазона (стандартный режим) ±0,1% от диапазона (режим DS)		
Линейность (погрешность), Хось	±0,2% от диапазона		
Разрешение, Z ось	0,01% от диапазона (стандартный режим) 0,02% от диапазона (режим DS)		
Разрешение, Хось	648 или 1296 точек (программируемое значение)		
	Лазер		
660 нм или 40 Class 2M	05 нм или 450 нм или 808 нм по IEC/EN 60825-1:2014		
	Интерфейс		
Основной	Ethernet / 1000 Мбит/с		
Входы синхронизации	RS422, 3 канала		
Вход аппаратного вкл/выкл лазера 1			
ыходы RS422, 1 канал			
Напряжение питания	930 В или 1236 В для сканеров с синим лазером		
Потребляемая мощность, не более	6 Вт (без нагревателя)		
Устойчивост	ъ к внешним воздействиям		
Класс защиты	IP67		
Уровень вибраций	20 г / 10…1000 Гц, 6 часов для каждой из XYZ осей		
Ударные нагрузки	30 g / 6 мс		
-20+40°С или -40+40°С для сканеров со встроенным нагревателе -40+120°С для сканеров со встроенным нагревател системой охлаждения			
Температура хранения	-20+70°C		
Относительная влажность	5-95% (без конденсации)		
Материал корпуса / окон	алюминий / стекло		

Диапазон	MR, мм	smrZ, мм	emrZ, мм	Xsmr, мм	Xemr, мм	Раз	меры	Вес, кг
25/10-8/11	10	25	35	8	11	Рис	унок 1	0,37
65/25-20/22	25	65	90	20	22			
75/50-30/41	50	75	125	30	41			
70/100-48/82	100	70	170	48	82	Рисунок 2		
70/150-58/122	150	70	220	58	122			0,6
95/150-53/106	150	95	245	53	106			
82/200-60/150	200	82	282	60	150			
90/250-65/180	250	90	340	65	180	1		
180/250-170/278	250	180	430	170	278		L=326 мм	2
190/300-160/300	300	190	490	160	300		L=283 мм	1,9
220/300-203/330	300	220	520	203	330		L=374 мм	2,1
260/400-210/400	400	260	660	210	400		L=350 мм	2,2
325/500-268/500	500	325	825	268	500		L=415 мм	2,3
400/600-320/600	600	400	1000	320	600	Рисунок 3	L=490 мм	2,4
475/700-374/700	700	475	1175	374	700	-	L=558 мм	2,5
545/800-425/800	800	545	1345	425	800		L=627 мм	2,6
615/900-480/900	900	615	1515	480	900		L=696 мм	2,7
690/1000-535/1000	1000	690	1690	535	1000		L=765 мм	2,8
620/1165-430/1010	1165	620	1785	430	1010		L=554 мм	2,5

7.2. Рабочие диапазоны и габаритные размеры

Подробную CAD-документацию (2D и 3D) можно найти здесь: https://riftek.com/upload/iblock/0ba/2D CAD.rar

htthttps://riftek.com/upload/iblock/c80/RF627 3D.zip

Корпус датчика выполнен из анодированного алюминия. На передней панели корпуса расположены два окна: одно – выходное, другое – для приема излучения, отраженного от контролируемого объекта. Габаритные и установочные размеры датчиков показаны на рисунках ниже. Для установки в оборудование корпус датчика содержит крепежные отверстия. Датчики, показанные на рисунке 3, снабжены переставляемой опорой, позволяющей реализовать три варианта крепления сканера.

На корпусе датчика установлены два разъема, кнопка **Reset** и светодиодные индикаторы.

Лазерные сканеры

9

8. Пример обозначения при заказе

PФ627.(WAVE)-smrZ/MR-Xsmr/Xemr-M(R)-H-AK-EW-AC

Символ	Наименование
(WAVE)	Длина волны лазера: 660 нм – без символа, 405 нм или 450 нм – BLUE, 808 нм – IR.
smrZ	Начало рабочего диапазона по Z, мм.
MR	Рабочий диапазон по Z, мм.
Xsmr	Диапазон по Х-координате в начале рабочего диапазона Z координаты, мм.
Xemr	Диапазон по X-координате в конце рабочего диапазона Z координаты, мм.
м	Длина кабелей, м.
R	Опция, робот-кабель.
н	Наличие встроенного нагревателя.
AK	Наличие системы обдува окон.
EW	Наличие сменных окон.
AC	Наличие системы воздушного охлаждения. Для заказа системы водяного охлаждения требуется консультация с производителем.

Пример: РФ627BLUE-70/50-30/42-5 – сканер с синим лазером, начало рабочего диапазона smrZ - 70 мм, рабочий диапазон Z - 50 мм, Xsmr - 30, Xemr - 42, длина кабелей 5 м.

Примечание: габаритные размеры датчиков с опциями АК, EW, AC показаны в **Приложении 3**. Подробная документация (2D и 3D) - на сайте.

9. Общие требования к установке

Сканер устанавливается таким образом, чтобы контролируемый объект располагался в зоне рабочего диапазона сканера. Кроме того, в области прохождения падающего на объект и отраженного от него излучения не должно находиться посторонних предметов.

При контроле объектов сложной формы и текстуры необходимо минимизировать попадание зеркальной составляющей отраженного излучения во входное окно сканера.

ВАЖНО!

Сканер должен быть заземлен. Статическое электричество может вызвать отказ электронных компонентов.

10. Подключение

В комплект поставки сканера входят два кабеля:

- 1) кабель для подключения сканера к сети Ethernet;
- 2) кабель питания с линиями синхронизации и выходов.

ВАЖНО!

В настоящем Руководстве приведено описание кабелей, поставляемых для сканеров стандартной конфигурации.

Документация на кабели всегда прилагается к комплекту поставки.

10.1. Назначение контактов разъемов

Сканер оснащен двумя разъемами:

- 1. Разъем Ethernet;
- 2. Многофункциональный разъем.

Вид со стороны контактов разъемов показан на рисунках:

Назначение контактов приведено в таблицах. Разъем №1:

Номер контакта	Назначение 100baseTX	Назначение 1000baseT
1		D4+
2		D3-
3		D3+
4	RX-	D2-
5	RX+	D2+
6	TX-	D1-
7	TX+	D1+
8		D4-

Разъем №2:

Номер контакта	Назначение	Примечание
1	OUT1-	RS422
2	IN3-	RS422
3	IN3+	RS422
4	IN2-	RS422
5	IN2+	RS422
6	NEXT_LAS_OFF	Вход аппаратного вкл/выкл лазера. Аппаратное вкл/выкл предполагает включение/выключение лазерного излучения независимо от настроек сканера.
7	IN1+	RS422
8	IN1-	RS422
9	OUT1+	RS422
10	VIN	+930В, 1А максимум
11	GND	Заземление
12	08	0В источника питания (клемма «-»)

10.2. Кабели

Кабель №1:

Номер контакта разъема RJ45	Назначение 100baseTX	Назначение 1000baseT	Цвет провода
1	TX+	D1+	Белый/оранжевый
2	TX-	D1-	Оранжевый
3	RX+	D2+	Белый/зеленый
4		D3+	Синий
5		D3-	Белый/синий
6	RX-	D2-	Зеленый
7		D4+	Белый/коричневый
8		D4-	Коричневый

Кабель №2, свободные проводники:

Цвет провода	Назначение
Черный	OUT1-
Серый/розовый	IN3-
Красный/синий	IN3+
Серый	IN2-
Розовый	IN2+
Белый	NEXT_LAS_OFF
Зеленый	IN1+
Желтый	IN1-
Фиолетовый	OUT1+
Красный	VIN
Синий	GND
Коричневый	0V

10.3. Кнопка и индикация

Нажатие кнопки **Reset** в течение 5 секунд приводит к перезагрузке сканера. При коротком нажатии на кнопку **Reset** (около 1 секунды) в соответствии с сервисным протоколом рассылается широковещательный пакет с ответом на команду "GET_HELLO". Индикация:

Индикация красного диода			
Мигает	Загрузка ПО сканера из Flash-памяти		
Горит постоянно	Устройство загружено и работает		
Отображает сигнал SOS (три коротких-три длинных- три коротких)	- Устройство загружено в режиме Recovery		
Индикация	зеленого диода		
Вспыхивает на 0,5 сек с периодом около 3 сек	Сетевое соединение недоступно		
Мигает быстро (отдельные вспышки не различимы глазом)	Сетевое соединение функционирует нормально, скорость 1000 Мбит/с		
Мигает быстро (отдельные вспышки различимы глазом)	Сетевое соединение функционирует нормально, скорость 100 Мбит/с		
Вспыхивает дважды, затем пауза (при этом красный мигает)	Скорость текущего соединения меньше требуемой для передачи данных сканером		

11. Ethernet-интерфейс и пользовательское ПО

Передача профилей осуществляется по UDP протоколу. Управление сканером может осуществляться тремя способами:

1. Через встроенный WEB-интерфейс, см. описание ниже.

2. Посредством программного обеспечения, разработанного пользователем с использованием предоставляемого SDK (Software Development Kit). В комплект SDK включены подробное описание всех функций библиотеки и примеры программ на различных языках (C, C++, C#, Python), а также примеры использования библиотек в различных средах (MATLAB, LabVIEW). Достигнута совместимость с любыми операционными системами семейства Windows, Linux и MacOS, см:

• Исходный код SDK, а также необходимая информация для загрузки, установки и настройки среды разработки:

https://github.com/RIFTEK-LLC/RF62X-SDK

• Руководство программиста: https://github.com/RIFTEK-LLC/RF62X-SDK/blob/master/Docs/RF62X-SDK.ru.pdf

Последние выпуски библиотеки:

https://github.com/RIFTEK-LLC/RF62X-SDK/releases

• Демо-ролики компиляции и запуска SDK:

https://cloud.riftek.com/index.php/s/q55Zq8i8kccAERj

3. Посредством Web API - с помощью GET и PUT HTTP запросов, см. Приложение 4 данного Руководства.

12. Настройка сети и включение

12.1. Настройка сети

В случае, если заказом не предусмотрено иное, все сканеры поставляются со следующими заводскими настройками:

- Автосогласование скорости соединения (100/1000 Мбит/с)
- IP адрес сканера по умолчанию: 192.168.1.30
- Маска подсети: 255.255.255.0
- Сетевой адрес шлюза: 192.168.1.1
- Сетевой адрес хоста (устройства, принимающего профили): 192.168.1.2

- Порт хоста для приема данных: 50001
- Порт НТТР соединения (для подключения браузера): 80
- Сервисный порт сканера: 50011

Так как в исходном состоянии лазерный сканер настроен для работы в адресном пространстве 192.168.1.*, выполните соответствующую настройку сетевой карты ПК, например, следующим образом:

Свойства: Протокол Интерно	ета версии 4 (TCP/IPv4) 🗙				
Параметры IP можно назначать авт поддерживает эту возножность. В г параметры IP у сетевого администр	оматически, если сеть противном случае узнайте атора.				
○ Получить IP-адрес автоматически					
Оспользовать следующий IP-а,	<u> Использовать следующий IP-адрес:</u>				
<u>I</u> Р-адрес:	192.168.1.5				
Маска подсети:	255.255.255.0				
Основной <u>ш</u> люз:					
Получить адрес DNS-сервера а	Получить адрес DNS-сервера автоматически				
• Использовать следующие адр	еса DNS-серверов:				
Предпочитаемый DNS-сервер:					
Альтернативный DNS-сервер:	• • •				
Подтвердить параметры при	дополнительно				
	ОК Отмена				

Изменить сетевые параметры сканера можно с помощью сервисного ПО (SDK), сервисного протокола или на WEB-странице сканера.

ПРИМЕЧАНИЕ: Jumbo-кадры не поддерживаются.

12.2. Первое включение

- Выполните сетевые настройки в соответствии с предыдущим пунктом.
- Подключите сканер к ПК или коммутатору.
- Подключите источник питания напряжением 9...30 В к сканеру (кабель №2, красный провод плюс источника питания, коричневый минус).

После подачи электропитания в течение около 8 секунд выполняется загрузка прошивки FPGA и инициализация интерфейса Ethernet, во время которой мигает красный светодиод.

Далее рекомендуется проверить подключение с помощью команды консоли «ping 192.168.1.30 (или текущий IP адрес сканера)». Если все настройки выполнены верно, сканер ответит на команду, типичный результат приведен ниже:

	дминистратор: C:\windows\system32\cmd.exe	×
C:	>ping 192.168.1.30	^
Обне Отве Отве Отве Отве Стат	ен пакетани с 192.168.1.30 по с 32 байтани данных: ет от 192.168.1.30: число байт=32 вреня<1ис TTL=255 ет от 192.168.1.30: число байт=32 вреня<1ис TTL=255 ет от 192.168.1.30: число байт=32 вреня<1ис TTL=255 ет от 192.168.1.30: число байт=32 вреня<1ис TTL=255 гистика Ping для 192.168.1.30: Пакетов: отправлено = 4, получено = 4, потеряно = 8	
Прие С:\Ц	(0% потерь) близительное время приема-передачи в нс: Минимальное = Өмсек, Максимальное = Ө мсек, Среднее = Ө мсек Jsers\	÷

Сканер готов к работе.

Выключение сканера выполняется снятием питающего напряжения.

13. WEB-интерфейс

Для проверки функционирования, настройки параметров, накопления и отображения профилей сканеры серии РФ627 содержат встроенную WEB-страницу, доступ к которой возможен из любого браузера по сетевому адресу сканера. Внешний вид WEB-страницы:

WEB-страница разделена на пять областей:

1 - Имя сканера, модель сканера, его серийный номер, версия прошивки и диапазоны.

2 - Область индикаторов состояния сканера.

3 - Область вкладок параметризации.

4 - Область отображения результатов работы сканера.

5 - Область кнопок управления и уведомлений.

Область 1 содержит имя сканера, модель сканера, его серийный номер, версию прошивки и диапазоны. Имя сканера может быть изменено пользователем.

Область 2 содержит набор групп индикаторов состояния сканера:

Группа	Изображение	Описание
	Link, Mbps Required, Mbps	При наличии соединения со сканером в данном поле будет отображаться надпись Link со значением скорости текущего соединения. Надпись Required отображает значение рекомендуемой скорости соединения, необходимой для корректной работы устройства.
Ethernet	Connection problem	Появляется при появлении задержек в сети при передаче данных.
	Disconnected	Появляется в случае потери связи со сканером (например, при его перезагрузке или обрыве связи на линии). WEB-страница будет отображаться, но статус изменится на Disconnected .
		Значения температуры процессора и температуры внутри корпуса сканера. Данная информация является справочной и служит для оценки условий работы сканера. Не следует допускать повышения
Temp	65.0 47.3 CPU, °C Internal, °C	температуры до 90°С и более. Индикация включается при превышении 90°С и если температура ниже -15°С:
		92.3 86.3 CPU, °C Internal, °C

Группа	Изображение	Описание
Profiles	STUDIE Internal PPS Profile Format	 Отображает такие параметры, как источник синхронизации (поле является кнопкой циклического переключения источников), текущее количество профилей в секунду (PPS) и текущий формат данных профиля (Format), отсылаемых сканером по протоколу UDP (поле является кнопкой циклического переключения форматов). Иконки источника синхронизации: Internal - Синхронизация профилей от внутреннего генератора сканера. External - Синхронизация профилей по внешнему триггеру. Soft - Синхронизация профилей по программному запросу. Вид кнопок циклического переключения при наведении курсора:
Counters	70239 0 → Profile Pulse Direction	Отображает значение счётчика профилей (Profile), счётчика импульсов энкодера (Pulse), направление счета энкодера (Direction). В правой части находится кнопка сброса счётчиков в нулевое значение.
Dump Уровень заполнения внутренней кнопка управления записью (Recc калиброванных профилей (Data for записи будет заблокирована.		Уровень заполнения внутренней памяти для записи профилей и кнопка управления записью (Record). Запись возможна только для калиброванных профилей (Data format > Profile), иначе кнопка старта записи будет заблокирована.
Inputs	St 1: 2: 3:	Состояние входов сканера. Представляют собой осциллограммы цифровых сигналов на входах. Осциллограммы отображаются только для включенных входов.

Область 3 обеспечивает доступ к детальным настройкам сканера и включает следующие вкладки:

Вкладка	Иконка	Описание
General	General	Общие настройки сканера, включающие параметры СМОЅ сенсора и области интереса матрицы (ROI), управление лазером, управление потоком данных.
Processing	Processing	Настройки параметров выделения профиля.
Triggering	Triggering	Настройки входных каналов сканера (режимов запуска измерений) и выходных каналов для синхронизации работы нескольких сканеров.
Dump	Dump	Управление накоплением профилей во внутренней памяти сканера.
Smart	Smart	Доступ к функциям математической обработки профилей, смарт- блокам измерений различных геометрических и статистических величин, графе вычислений.
Network	Network	Сетевые настройки сканера.
System	System	Системные настройки сканера, включающие общую информацию о сканере, поддержку режимов совместимости, обновление встроенного ПО и просмотр журнала работы устройства (log-файл).

Область 4 предназначена для оперативного отображения результата работы сканера. Элементы управления этой областью описаны в пар. <u>15.1.</u>

Область 5 расположена в правом верхнем углу и содержит область уведомлений сканера и кнопки управления.

Кнопка	Наименование	Назначение	
	Save configuration	Сохранение настроек во внутренней флэш-памяти сканера.	
•		Кнопка с красным значком означает, что параметры изменены, но не сохранены.	
<u>ئ</u> ار	Load defaults	Восстановление заводских настроек. После загрузки заводских параметров сканер перезагрузится автоматически.	
G	Restart device	Перезагрузка сканера.	

Область уведомлений сканера содержит раскрывающийся список важных сообщений и событий сканера с привязкой ко времени работы устройства после подачи питания:

• 00:17:4	9 Saved successfully	
00:17:49	Saved successfully	
00:15:19	Done reading firmware	
00:15:16	Start reading firmware	
00:14:26	Done receiving firmware, CRC OK	
00:14:15	Start receiving firmware	

14. Поиск сканера в сети и подключение

Введите IP-адрес сканера в адресной строке браузера и нажмите клавишу **Enter**. При обнаружении сканера в сети браузер отобразит его WEB-страницу.

Если сетевые настройки выполнены верно и набранный адрес соответствует IPадресу сканера, в поле индикатора **Ethernet** будет отображаться надпись **Link** со значением скорости текущего соединения. Сканер готов к работе.

15. Область отображения результатов работы

В данной области можно просматривать:

- калиброванный профиль (профиль в декартовых координатах сканера), или
- некалиброванный профиль, выделенный из изображения, или
- видеопоток с CMOS сенсора сканера с наложением выделенного из изображения некалиброванного профиля.

15.1. Элементы управления

В верхней части области отображения результатов расположены элементы управления:

где: 1 – кнопки режима отображения;

2 – область дополнительных параметров отображения;

3-кнопки управления масштабом отображения.

Кнопки в области 1 определяют режим отображения данных. Возможные режимы:

Режим отображения	Иконка	Описание
Profile	Profile	Отображения профиля на 2D координатной сетке.
Video	Video	Просмотр видеопотока с CMOS-сенсора сканера.

Содержание элементов управления в **области 2** зависит от выбранного режима отображения и приведено в разделе <u>15</u>. описания соответствующих режимов отображения. Элементы управления **области 3** обеспечивают управление масштабом:

Кнопка	Иконка	Описание
Zoom In	Ð	Приближение.
Zoom Out	Q	Отдаление.
Zoom Reset	X	Сброс масштабирования в исходное состояние. Возврат изображения в исходный масштаб возможен также по двойному клику левой кнопкой мыши в области просмотра.

Также для управления масштабом может быть использовано колесо мыши.

15.2. Режимы отображения

15.2.1. Режим Profile

Режим **Profile** обеспечивает просмотр двухмерного профиля на координатной сетке. Вертикальная ось соответствует координате Z сканера, горизонтальная — координате X.

На координатной сетке отображается профиль (красным), диапазон сканера (белым) и область ROI (желтым), если включен режим ROI. При наведении курсора мыши (желтый) на интересующую область координатной сетки появляется курсор с указанием позиции в координатах сканера. Перемещение изображения производится мышью с нажатой правой клавишей.

Просмотр текущего профиля в режиме реального времени может управляться нажатием кнопки **Pause II** / **Play** , которая расположена в области дополнительных параметров отображения.

В режиме **Raw** (Вкладка **General > Раздел Stream > Data format**) на координатной сетке отображается некалиброванный профиль. Координатная сетка при этом имеет размерность пикселей рх.

15.2.2. Режим Video

Режим Video обеспечивает просмотр видеопотока с CMOS сенсора сканера с наложением детектированного профиля на изображение (в режиме **Raw**).

Скорость передачи изображения определяется производительностью компьютера (среднее значение, порядка 15 кадров/с).

Изображение выводится на двух экранах, на меньшем экране в жёлтом прямоугольнике показано положение зоны просмотра.

Зелёным цветом показаны точки некалиброванного профиля, выделенные сканером из изображения. При просмотре в режиме калиброванного профиля отображается только видеосигнал.

В области дополнительных параметров отображения расположена кнопка остановки/запуска видеопотока, кнопка включения режима редактирования битых пикселей матрицы (Edit pixels), кнопка сохранения скриншота (сохраняется полное изображение матрицы сканера независимо от масштаба при просмотре), а также ползунок регулирования гамма-коррекции изображения с кнопкой сброса в начальное значение.

Гамма-коррекция применяется только к отображаемому кадру в веб-интерфейсе и предназначена для улучшения визуальной видимости участков с низкой интенсивностью. Процедура редактирования битых пикселей описана в Приложении 2.

16. Процедура настройки параметров

Характер работы сканера определяют его конфигурационные параметры.

Для настройки параметров сканера необходимо перейти на нужную вкладку и внести изменения. Все настройки, кроме сетевых, применяются незамедлительно. Для того, чтобы изменения параметров сети вступили в силу необходимо нажать кнопку **Аррly**. Все изменения записываются в оперативную память сканера и будут потеряны при повторном включении. Если хотите сохранить параметры, записывайте их в энергонезависимую память сканера перед тем как его перезагрузить. Кнопки управления сохранением параметров расположены в правом верхнем углу окна. Назначение кнопок см. п. <u>13</u>.

17. Вкладка Network. Настройка сетевых параметров

Настраиваемые параметры раздела Current Network settings:

Параметр	Значение при заводских настройках	Описание
Speed (Mbps)	-	Скорость соединения. Доступные режимы: 10 Мбит/с, 100 Мбит/с, 1000 Мбит/с,
Autonegotiation	ON	Режим автоматического согласования скорости сетевого соединения.

Настраиваемые параметры раздела Current IP settings:

Параметр	Значение при заводских настройках	Описание	
IP address	192.168.1.30	IP-адрес сканера.	
Gateway	192.168.1.1	Сетевой адрес шлюза.	
Subnet mask	255.255.255.0	Маска подсети.	
Host IP address	192.168.1.2	Сетевой адрес компьютера (или другого сетевого устройства), принимающего профили.	
Service port	50011	Номер порта сканера для сервисного протокола управления.	
Destination port	50001	Номер порта компьютера (или другого сетевого устройства), принимающего профили, на который сканер должен отсылать UDP пакеты с профилями.	

Для того, чтобы изменения вступили в силу необходимо нажать кнопку Apply.

18. Вкладка General. Настройка общих параметров

18.1. Настройка параметров CMOS-сенсора

 Sensor 		
Frames per second	max:	490
0	490	
Double frame rate		OFF
Exposition control	Fixed	*
Exposition, us:	max:	1997
1 - ()	211	
2		
3		
EDR Mode EDR disabled 🗸		
0		

Настраиваемые параметры:

Параметр	Значение	Описание
	при заводских настройках	
Frames per second	485	Текущее количество профилей (кадров) в секунду, которое обрабатывает и передаёт сканер.
Double frame rate (DS mode)	OFF	Включение и выключение режима удвоенной частоты кадров (частоты следования профилей): • ON – включен, сканер работает в режиме DS; • OFF – выключен, сканер работает в стандартном режиме. Примечание: в данном режиме линейность сканера по Z снижается с ±0,05% до ±0,1% от диапазона Z.
Exposition control	Fixed	 Режим управления экспозицией. Варианты: Auto – автоматическая корректировка экспозиции; Fixed – экспозиция задаётся пользователем; Adjust – экспозиция подбирается устройством автоматически при записи в параметр "user_sensor_exposureAdjust" значения "TRUE"; после окончания подбора, значение этого параметра автоматически будет изменено на "FALSE"; 2 exposures – режим совмещения профиля из 2 кадров с разной экспозицией; 3 exposures – режим совмещения профиля из 3 кадров с разной экспозицией; Difference – режим удаления фоновой засветки, такой как блики от солнца и других источников интенсивного света. В данном режиме частота профилей снижается в 2 раза (значение PPS) относительно частоты кадров CMOS-сенсора (параметр "Frames per second").
Exposition, us	3000	Время экспозиции CMOS-сенсора (время накопления сигнала) в микросекундах, шаг 1 мкс. Минимальное значение составляет 3 мкс, максимальное возможное значение зависит от установленной частоты кадров, в том числе для режима ROI и режима DS , и ограничена значением 1/FPS . Экспозиции под номером 2 и 3 (расположены под параметром Exposition, us) доступны только в режиме 2 exposures и 3 ехроsures соответственно (см. параметр Exposition control). Примечание: лазер сканера автоматически включается только на время экспозиции.
EDR Mode	Disabled	Расширение динамического диапазона CMOS-сенсора. Возможные варианты:

Параметр	Значение при заводских настройках	Описание		
		 EDR disabled – Расширение динамического диапазона отключено. Column EDR – Расширение динамического диапазона достигается за счет разного времени экспозиции для четных и нечетных столбцов CMOS-сенсора. Для нечетных - время экспозиции ниже. Используется при контроле сложных объектов, содержащих участки с различной отражающей способностью. Снижение экспозиции определяется коэффициентом Interleaved exposure divider. Piecewise linear EDR – Расширение динамического диапазона достигается за счёт использования кусочно-линейного отклика CMOS-сенсора. 		
Interleaved exposure divider	5	Коэффициент снижения экспозиции для нечётных столбцов CMOS- сенсора. Определяет во сколько раз длительность экспозиции нечётных столбцов снижена относительно длительности основной экспозиции. Доступен только при активном режиме Column EDR.		

Для настройки требуемого параметра используйте ползунок, либо введите необходимое значение в поле и нажмите **Enter** (действительно как для стандартного режима работы, так и для режимов **DS** и **ROI**). Рядом с полем для ввода значения показано максимально возможное значение параметра.

18.2. Настройка параметров лазера

 Laser 	
Laser	ON
Laser output power, %	
	50

Настраиваемые параметры:

Параметр	Значение при заводских настройках	Описание
Laser	ON	Программное включение/выключение лазера.
Laser output power, %	10	Уровень выходной мощности лазера. Диапазон значений: 0100%. Примечание: уровень мощности лазера регулируется только в ручном режиме.

18.3. Настройка качества изображения

Интенсивность отраженного излучения, поступающего в сканер, зависит от свойств поверхности контролируемого объекта. В свою очередь, величина электрического сигнала, формируемого CMOS-матрицей сканера, зависит от времени накопления излучения (времени экспозиции), интенсивности лазерного излучения и режима работы самой матрицы. С целью получения оптимального для выделения профиля сигнала (изображения) необходимо установить оптимальное значение параметров лазера и матрицы.

Так как время экспозиции не может превышать длительности кадра, перед настройкой времени экспозиции необходимо установить требуемую частоту кадров (параметр **FPS**).

18.3.1. Настройка времени экспозиции и мощности лазера

Подбор времени экспозиции и уровня мощности лазера вручную осуществляется на основании визуального анализа качества изображения, получаемого с матрицы, а также анализа качества результирующего профиля (просмотр изображения и профиля см. п. <u>15.</u>).

Для настройки экспозиции используйте ползунок, либо введите требуемое значение в поле и нажмите Enter. Для удобства настройки можно выбрать режим Data format > Raw (раздел Stream вкладки General, п. <u>18.5.</u>). В этом случае в области просмотра в режиме Video одновременно отображаются видеосигнал с матрицы и выделенный профиль в координатах CMOS-сенсора (некалиброванные данные).

Для включения режима автоэкспозиции нажать кнопку **Autoexposure**. Сканер автоматически подберет оптимальную экспозицию.

Пример избыточной экспозиции	Пример оптимальной экспозиции

18.3.2. Режим нескольких экспозиций и режим EDR

Режим нескольких экспозиций (Exposition control > 2 exposures, 3 exposures), а также режим EDR предназначены для расширения динамического диапазона сканера. Режимы используются в случаях, когда в поле зрения сканера находятся объекты (поверхности одного объекта) с разными отражающими способностями.

В режиме нескольких экспозиций финальный профиль формируется в результате объединения нескольких (2 или 3) профилей, полученных с разным временем экспозиции.

ПРИМЕЧАНИЕ: в данном режиме частота выдачи профилей падает пропорционально количеству экспозиций.

При использовании **EDR** в зависимости от выбранного режима устанавливается разное время экспозиции для чётных и нечётных столбцов или используется неравномерная чувствительность CMOS-сенсора. Финальный профиль формируется за счёт объединения двух профилей. Частота выдачи профилей не меняется.

Пример:

В поле зрения сканера два объекта: светлый и тёмный.

При малом времени экспозиции профиль светлого объекта выделяется корректно, на чёрном объекте выделяются только несколько точек профиля. Записываем время экспозиции для светлого объекта.

Увеличиваем время экспозиции. Профиль чёрного объекта выделяется корректно, светлого - нет. Записываем время экспозиции для тёмного объекта.

Устанавливаем режим двух экспозиций с записанными величинами или устанавливаем режим EDR с соответствующими временами экспозиции для столбцов. Получаем качественное изображение и профиль сложного объекта.

18.3.3. Режим удаления фонового излучения от посторонних источников

Применение данного режима целесообразно в случае попадания в поле зрения сканера интенсивного отраженного излучения от посторонних источников (солнце, осветительные приборы и т.д.).

27

В данном режиме за счет дополнительной обработки обеспечивается практически полное подавление стационарного или не быстро изменяющегося относительно частоты кадров (Frames per second) фона (бликов, отражений, наложений пятен света на сканируемую поверхность и т.д.). Следует иметь в виду, что частота профилей (PPS) в данном режиме будет ½ от частоты кадров.

18.4. Настройка режима ROI

Раздел Region of interest:

 Region of interest 	
Enable	ON
Position control	Manual v
Position	31
Detect threshold	320
Size	152

Параметры режима **ROI (Область интереса)** управляют размером активной области приёмной CMOS-матрицы и её положением. По умолчанию активная область занимает всю матрицу. Уменьшение размера активной области позволяет увеличить быстродействие сканера за счёт уменьшения времени считывания изображения. Изменение размера возможно только в направлении Z и выполняется в системе координат матрицы.

Зависимость рабочей частоты сканера от размера области интереса (типовые значения):

28

Размер ROI, (в % от MR) / (линий)	Без DS	С включенным DS
100% / 488	485	921
65% / 320	720	1335
41% / 200	1100	1965
19% / 96	2029	3325
13% / 64	2741	4223
6,5% / 32	4223	5788
5% / 24	4884	6379

Настраиваемые параметры:

Параметр	Значение	Описание	
	при заводских		
Enable	OFF	Включение и выключение режима Область интереса: • ON - режим включен; • OFF - режим выключен. При включении данного режима CMOS-сенсор в течение одного кадра переходит в режим обработки части активной области с параметрами Position и Size. Частота профилей увеличивается обратно пропорционально размеру области интереса (Size).	
Position control	Fixed	 Режим управления положением области интереса: Fixed - ручной режим. Положение области интереса на матрице фиксировано и определяется параметром Position. Размер области определяется параметром Size. Auto - автоматическое управление положением с удержанием профиля в центре. При потере профиля, сканер переходит в режим работы без области интереса (работа во всем диапазоне, частота кадров снижается до стандартной), при обнаружении профиля - автоматический переход в регион интереса с увеличением частоты кадров. Auto-scan - автоматическое управление положением с удержанием профиля в центре. При потере профиля, сканер переходит в режим сканирования рабочего диапазона областью интереса (частота кадров не снижается), при обнаружении профиля - автоматический переход в удержанием профиля в режим сканирования рабочего диапазона областью интереса (частота кадров не снижается), при обнаружении профиля - автоматический переход в удержание профиля в регионе интереса. 	
Position	300	Положение верхней границы области интереса в режиме FIXED (задается в линиях). Допустимые значения: от 0 до (488-Size).	
Detect threshold	324	Параметр активен в режиме AUTO . Задает количество точек в профиле, которое является признаком нахождения профиля в пределах области интереса. Если в области интереса количество точек меньше заданного значения, сканер автоматически перейдет в режим поиска профиля на всем поле CMOS-сенсора (область интереса расширяется на всю матрицу с соответствующим изменением быстродействия). При обнаружении заданного количества точек профиля сканер автоматически возвращается в заданный размер ROI . Допустимые значения количества точек: от 1 до 648. Размер области интереса определяется параметром Size , параметр Position изменяется автоматически.	
Size	64	Размер области интереса (задается в линиях). Допустимые значения: от 24 до 480.	

Пример.

Автоматическое перемещение области интереса с удержанием профиля в установленных границах ROI (желтые линии).

РФ627, РФ627Smart [Версия документа 2.1.2] 20.09.2021

18.5. Управление потоком данных

Группа параметров **Stream** управляет потоком данных сканера, разрешением по координате X, текущим форматом данных сканера, а также наличием в пакете профиля значений яркости точек.

Настраиваемые параметры:

Параметр	Значение при заводских настройках	Описание
UDP stream	ON	Включение и отключение потока UDP пакетов с профилями.
X-axis points	1296	Количество точек по координате Х (648 или 1296).
Data format	Calibrated profile	 Формат передачи профилей: Calibrated profile - передача калиброванных данных (профиль в декартовых координатах измерительной области). RAW profile - передача некалиброванных данных (профиль в системе координат СМОЅ-сенсора). Получение профиля в данном формате позволяет визуально сопоставить выделенный профиль и изображение, формируемое СМОЅ-сенсором. Данный формат является отладочным.
Intensity	OFF	Пересылка в пакете с профилем значений яркости точек: • ON – яркости точек включены в пакет профиля; • OFF – яркости точек не включены в пакет профиля. Описание формата данных при включенной в пакет профиля интенсивности подробно приведено в руководстве программиста.

19. Вкладка Processing. Настройки параметров выделения профиля

Вкладка **Processing** содержит параметры, управляющие процедурой выделения профиля из изображения (раздел **Pre Processing**), и параметрами фильтрации точек выделенного профиля (раздел **Post Processing**).

19.1. Pre Processing. Настройки параметров выделения профилей

Параметры раздела **Pre processing** определяют характеристики алгоритма выделения профиля из изображения.

Intensity clipping, %		
-0	= 25	
Peak selection mode	Max i	intensity 🗸
Detection threshold,%		
-0	• 6	
Peak width, pixels		
		100

Настраиваемые параметры:

Параметр	Значение при заводских настройках	Описание
Intensity clipping, %	1	Порог обрезки сигнала на изображении. Кадр анализируется вертикальным окном 5 точек. Если в окне есть значение яркости больше порога, то значение центрального пикселя окна остается неизменным. Если значение меньше порога, то оно заменяется на 0. Регулировка значения параметра позволяет снизить влияние посторонних засветок средней интенсивности (особенно в режимах, когда параметр "Peak selection mode" не равен "Max intensity"). Диапазон значений: 0100.

Параметр	Значение при заводских настройках	Описание	
		"Intensity clipping" = 4% "Intensity clipping" = 70%	
Peak selection mode (см. п. <u>19.1.1.</u>)	Maxintensity	 Выбор алгоритма определения пика яркости в столбце изображения для получения точки профиля. Используется для подавления ложного изображения, получаемого в результате переотражений лазерного луча на сложных профилях. Возможные варианты: Max intensity – Выбор пика с наибольшей яркостью; First – Выбор первого пика в столбце сверху; Last – Выбор последнего пика в столбце сверху; #2#4 – Выбор пика в столбце сверху с соответствующим номером. 	
Detection threshold, %	10	Параметр управляет уровнем обнаружения профиля на видеоизображении. Увеличение параметра позволяет уменьшить влияние шумов изображения, вызванных, например, внешней засветкой. Диапазон значений: 0100%. При значении параметра = 100% изображение практически не обрабатывается.	
Peak width, pixels	015	Ширина пика яркости в пикселях. Диапазон значений: 015.	

19.1.1. Параметр Peak selection mode

Параметр **Peak selection mode** определяет алгоритм детектирования пика яркости в столбце CMOS-сенсора для получения точки профиля. Изменение данного параметра помогает корректно выделить профиль в случаях переотражений лазерного луча от поверхностей сканируемых объектов или в случае засветки от внешних источников оптического излучения.

Интенсивность переотражённого луча или внешней засветки иногда может превышать интенсивность действительной лазерной линии. В данном случае возможно применение режимов с указанием более конкретной точки детектирования.

Пример:

Переотражения лазерного луча на объекте сложного профиля.

Значение **Max Intensity** определяет выбор точки профиля исходя из максимальной яркости изображения в столбце CMOS-сенсора. Яркость переотраженного сигнала может быть больше яркости исходного, сканер

некорректно выделяет профиль, располагая его как на исходной лазерной линии, так и на переотражении.

Значение **First** определяет выбор первого пика в столбце CMOS-сенсора сверху. Сканер выделяет профиль по переотраженному сигналу.

Значение Last определяет выбор последнего пика в столбце CMOS-сенсора сверху. Сканер выделяет профиль по реальному сигналу.

19.2. Post Processing. Фильтрация

Параметры раздела **Post processing** определяют операции, выполняемые непосредственно с точками профиля, выделенного из изображения.

 Post processing 		
Median filter width	Off	•
Bilateral filter width	Off	•
Profile flip	No	•

Настраиваемые параметры:

Параметр	Значение при заводских настройках	Описание
Median filter width	OFF	Размер (количество точек) скользящего окна медианного фильтра. Возможные значения: OFF, 3, 5, 7, 9, 11, 13, 15.
Bilateral filter width	OFF	Размер (количество точек) скользящего окна билатерального сглаживающего фильтра. Возможные значения: OFF, 3, 5, 7, 9, 11, 13, 15. Описание билатерального фильтра приведено в следующей статье: https://people.csail.mit.edu/sparis/bf_course/course_notes.pdf
Profile flip	NO	Переворот профиля в направлении выбранных осей. Возможные варианты: No – переворот отсутствует; X – переворот по оси X сканера; Z – переворот по оси Z сканера; XZ – переворот одновременно по обеим осям.

20. Вкладка Triggering. Настройка режимов запуска измерений

Вкладка **Triggering** предназначена для настройки режимов запуска измерений (синхронизации), а также выходных каналов сканера.

<u> </u>	Sync source				
General	INTERNAL	EXTERNAL	EXTERNAL BY REQ.	INTERNAL BY REQ.	
· · ·	 Trigger 				
rocessing	Trigger sou	Trigger source		1 v	
л	Strict sync				
riggering	Divider		- 1		
S Dump	Delay, us		- 0,7		
_ (T)	 Inputs 				
Smart	Enable		Diag or	OFF	
	Mode		Riseor		
	2 Mode		Rise or	fall 🗸	
Network	3 Enable Mode			OFF	
$\mathbf{\hat{D}}_{0}^{0}$			Rise	~	
System .	 Counte 	r			
	Туре		Unidirectional 🗸		
	Max counter value Reset time		4294967295		
				OFF	
	Time out, u	IS	0 420 406	7.00	
			429490	7,29	
	• Outputs	S			
	1 Enable		Exposu		
			Exposure start V		
	Enable			OFF	

20.1. Временной цикл работы сканера

Съём изображения, обработка (выделение профиля) и передача результата выполняются в конвейерном режиме. Конвейерный режим поясняется следующей диаграммой:

Обозначения:

Т	Период следования кадров (профилей).		
FPS	Частота кадров (профилей).		
N-1, N	Номера кадров (профилей).		
Event	Событие, которое запускает измерительный цикл получения единичного кадра (профиля).		
Exposure time	Время экспонирования матрицы.		
Laser ON time	Длительность включения лазера.		
Profile extraction and transfer	Время, необходимое для выделения профиля и начала его передачи.		

Для облегчения понимания системы синхронизации измерений введено понятие "события синхронизации" (далее – событие синхронизации), обозначающее наступление условия (внутреннего или внешних сигналов на входах, или их сочетаний) при котором сканер запускает очередной цикл экспонирования, расчётов, передачи результата (измерения или других данных).

Измерительный цикл (запуск измерения для получения одного профиля) всегда начинается по событию синхронизации, при этом открывается электронный затвор матрицы и включается лазер, т.е. происходит экспонирование СМОS-сенсора. После экспонирования выполняется считывание кадра, одновременно со считыванием выполняется расчёт профиля, после чего профиль передаётся в виде UDP-пакета. Одновременно со считыванием кадра выполняется экспонирование следующего кадра (если произошло событие синхронизации).

20.2. Структурная схема синхронизации

Структурная схема внутреннего модуля синхронизации сканера:

Источник событий синхронизации выбирается селектором (мультиплексором) Sync Source selection.

Для режимов внешней синхронизации (**External**) доступны делитель и схема задержки импульсов синхронизации (**Divider**, **delayer**), а также специальный счётчик – "счётчик энкодера" (**Encoder counter**), обеспечивающий одно- или двунаправленный подсчёт импульсов на входах #1 и #2. Кроме того счётчик энкодера способен подсчитывать импульсы внутреннего высокоскоростного генератора (10 МГц), если на входах установлены режимы работы по уровню, а не по фронту или спаду. Значение счётчика энкодера защёлкивается в момент события синхронизации и передаётся вместе с профилем.

В схему синхронизации также входит счётчик измерений (**Measures counter**), выполняющий подсчёт выполненных измерений.

Все счетчики (кроме **Packets counter**) могут быть сброшены внешним или внутренним сигналом (например: по входу #3, по таймеру, программным запросом и др.).

Замечания:

1. Максимальная обрабатываемая частота на входах #1, #2 и #3 - 10 МГц. Если частота поступления события выше FPS, запуск измерения производится ближайшим после завершения текущего цикла событием синхронизации (см. режим **Strict sync**). Минимальная допустимая длительность импульса - 40 нс. При использовании входного делителя (**Divider**) частота событий, запускающих измерение, равна (частота на входе)/ (значение делителя).

2. Передаваемый сканером пакет данных (см. "Руководство программиста") с координатами профиля несёт информацию о содержимом нескольких циклических счётчиков, позволяющим контролировать целостность данных:

- Счётчик системного времени начала каждого измерения.
- Счётчик входных импульсов (Encoder counter). Данный счётчик инкрементируется входным сигналом (входными сигналами). Счётчик может работать как реверсивный. Выделенный из квадратурных сигналов признак направления передаётся в пакете (Direction на структурной схеме).
- Счётчик измерений (Measures counter). Данный счётчик инкрементируется событием синхронизации.
- Счётчик пакетов (Packets counter). Данный счётчик инкрементируется при отправке UDP-пакета с профилем и позволяет контролировать потерю пакетов в сети.

20.3. Выбор источника событий синхронизации

Для выбора источника событий синхронизации (Sync source selection на структурной схеме) используйте раздел Sync source вкладки Triggering:

Sync source			
INTERNAL	EXTERNAL	EXTERNAL BY REQ.	INTERNAL BY REQ.

Где:

Источник синхронизации	Описание
INTERNAL	Источник по умолчанию. Синхронизация профилей от внутреннего генератора сканера. События, запускающие измерительный цикл, следуют с частотой, равной установленному значению FPS.
EXTERNAL	Синхронизация профилей по внешнему триггеру. Подробное описание см. ниже.
EXTERNAL BY REQUEST	Ожидание запроса (по сервисному протоколу) профилей от стороннего ПО. Для синхронизации используется внешний триггер. Если запроса нет, цикл измерения не запускается.
INTERNAL BY REQUEST	Ожидание запроса (по сервисному протоколу) профилей от стороннего ПО. Для синхронизации используется внутренний генератор. Если запроса нет, цикл измерения не запускается.

20.4. Настройка синхронизации по внешнему триггеру

Раздел **Trigger** предназначен для настройки внешнего сигнала синхронизации. Раздел доступен только при выборе источника **External**. Для подачи сигнала используются входы №1 и/или №2 сканера.

 Trigger 	
Trigger source	Input #1 🗸
Strict sync	OFF
Divider	1
Delay, us	1

Настраиваемые параметры:

Параметр	Значение при заводских настройках	Описание
Trigger source	Input #1	 Выбор входа для внешнего сигнала синхронизации или комбинации входов. Доступные режимы: Input #1 – Синхронизация по сигналу со входа №1. Input #2 – Синхронизация по сигналу со входа №2. Input #1 OR #2 – Синхронизация по любому из сигналов с обоих входов. Input #1 AND #2 – Синхронизация по совпадению сигналов на обоих входах.
Strict sync	ON	Принудительная привязка начала экспонирования к сигналу синхронизации. Данный режим предназначен для исключения стробоскопического эффекта на входах синхронизации.
Divider	1	Делитель входных импульсов. Измерительный цикл начинается по внешнему сигналу синхронизации с учетом установленного значения Divider . Делитель = 1 - по каждому сигналу на входе, делитель = 2 - по каждому второму и т.д. Установка определенного

Параметр	Значение при заводских настройках	Описание
		значения делителя позволяет, например, согласовать частоту входных сигналов и допустимую частоту работы сканера.
Delay, us	OFF	Задержка в мкс от начала сигнала синхронизации до события синхронизации (непосредственного начала измерительного цикла).

20.4.1. Настройка параметров входов

Раздел Inputs определяет параметры входов.

Настраиваемые параметры входов №1 и №2:

Параметр	Значение при заводских настройках	Описание
Enable	OFF	Включение/отключение входа.
Mode	Rise or Fall	 Режим обработки сигнала на входе. Доступные режимы: Rise or fall – Синхронизация по фронту или спаду. Rise – Синхронизация по фронту. Fall – Синхронизация по спаду. High level — Синхронизация по высокому уровню. Low level — Синхронизация по низкому уровню.

Вход №3 сканера предназначен для подключения сигнала сброса счётчиков измерений и энкодера.

Настраиваемые параметры:

Параметр	Значение при заводских настройках	Описание
Enable	OFF	Включение/отключение входа.
Mode	Rise	Режим обработки сигнала сброса. Доступные режимы: • Rise — Сброс по фронту. • Fall — Сброс по спаду.

20.4.2. Настройка счетчика энкодера

Раздел Counter определяет настройки счётчика энкодера (Encoder counter).

▼ Counter		
Туре	Unidirectional 🔻	
Reset time	OFF	
Time out, us	4294967	
Max counter value	4294967295	

Настраиваемые параметры:

Параметр	Значение при заводских настройках	Описание
Туре	Unidirectional	 Тип счётчика. Доступные режимы: Unidirectional – Счётчик однонаправленный (нереверсивный). Bidirectional – Счётчик двунаправленный (реверсивный). Учитывает направление движения энкодера.
Reset time	OFF	Сброс счётчика по истечении заданного времени в случае отсутствия событий синхронизации.
Time out, us	4294967 (максимальное значение)	Интервал времени в мкс для сброса в случае отсутствия событий синхронизации.
Max counter value	4294967295 (максимальное значение)	Максимальное значение счётчика, после превышения которого происходит сброс.

20.4.3. Примеры настроек

Примеры настроек запуска измерений сведены в таблицу:

N⁰	Источник	Как это работает	Опции	Как установить
1	Внутренний генератор.	Профили передаются непрерывно с установленной частотой кадров FPS. Каждое измерение начинается по внутреннему генератору.		 Установить требуемую частоту кадров. Выбрать источник Internal.
2	Программный запрос.	Каждое измерение начинается с поступлением программного запроса.		 Выбрать источник Software. См. "Руководство программиста".
3	Внешний триггер, запуск единичного измерения.	Каждое измерение начинается с поступлением сигнала триггера на вход #1 с учетом установленных параметров.	 Запуск измерения по фронту входного импульса. Запуск измерения по спаду импульса. Запуск измерения по фронту и спаду импульса. Задержка запуска. Делитель. 	 Подключить источник ко входу #1 и включить вход (Enable). В разделе Inputs выбрать требуемый режим Mode. При необходимости установить значение Delay. При необходимости установить значение Divider.
4	Энкодер, одна фаза.	Аналогично №3.	Аналогично №3.	Аналогично №3.
5	Энкодер, одна фаза и "0"-метка.	Аналогично №3. Сброс счетчика измерений - по поступлению фазы Z.	Аналогично №3.	 Аналогично №3. Подключить фазу Z ко входу #3. Включить вход №3 (Enable) и выбрать режим работы Mode.
6	Энкодер, две фазы.	Каждое измерение начинается с поступлением квадратурных сигналов энкодера (умножение на 4) на входы #1 и #2 с учетом установленного коэффициента деления. Направление движения контролируется/не	 Делитель. Реверсивный / нереверсивный счёт. 	 Подключить фазу А ко входу #1, включить вход. Подключить фазу В ко входу #2, включить вход.

N⁰	Источник	Как это работает	Опции	Как установить
		контролируется, признак направления передается/не передается в пакете данных.		 Выбрать режим работы Mode Rise or Fall для обоих входов. При необходимости установить значение Divider. Установить Counter type - Bidirectional/Unidirectio nal.
7	Энкодер, две фазы и "0"-метка.	Аналогично №6. Сброс счетчика измерений - по поступлению фазы Z.	Аналогично №6.	 Аналогично №6. Подключить фазу Z ко входу #3. Включить вход №3 (Enable) и выбрать режим работы Mode.
8	Сигнал Step/Dir (Шаг/Направление).	Каждое измерение начинается с поступлением сигнала Step на вход #1 с учётом установленного коэффициента деления. Признак направления Dir передаётся в пакете данных.	 Запуск измерения по фронту импульса. Запуск измерения по спаду импульса. Делитель. 	 Подключить сигнал Step ко входу #1. Подключить сигнал Dir ко входу #2. При необходимости установить значение Divider.
9	Внешний триггер. Запуск серии измерений по внутреннему генератору.	Серия измерения с установленной частотой FPS начинается с поступлением сигнала на вход #1. Серия измерений останавливается при смене уровня сигнала.	 Запуск серии измерений по высокому уровню импульса. Запуск серии измерений по низкому уровню. 	 Подключить источник ко входу #1. Установить требуемое значение: High Level или Low Level.

20.5. Настройка выходов

Раздел **Outputs** определяет настройку формирования сигналов на выходах сканера.

Настраиваемые параметры:

Параметр	Значение при заводских настройках	Описание
Enable	OFF	Включение/отключение выходов.
Mode	Exposure start	 Режим формирования выходного сигнала. Доступные режимы: Ехроsure start – Формирование выходного импульса длительностью 1 мкс по событию, запускающему измерительный цикл. Ехроsure time – Формирование выходного сигнала, совпадающего с сигналом Ехроsure time на временной диаграмме работы матрицы.

Параметр	Значение при заводских настройках	Описание
		 In1 repeater – Дублирование сигнала входа №1 на выход. In2 repeater – Дублирование сигнала входа №2 на выход. In3 repeater – Дублирование сигнала входа №3 на выход. Замечание: Величина задержки выходного сигнала по отношению к дублируемым сигналам порядка 50 нс.

21. Вкладка Triggering. Настройка синхронизации нескольких сканеров

При проведении измерений несколькими сканерами часто возникает необходимость в обеспечении **синхронности** измерений, например, с целью объединения профилей, полученных с разных участков движущегося объекта, в единый профиль.

При установке сканеров в линию или вокруг объекта, или друг напротив друга возникает необходимость в обеспечении **асинхронности** измерений с целью исключения влияния лазерного излучения соседних сканеров друг на друга.

Для синхронизации работы нескольких сканеров используется выход OUT одного из сканеров. Фронт выходного сигнала сканера всегда соответствует моменту включения лазера сканера (началу времени накопления), срез сигнала соответствует моменту выключения лазера (окончания времени накопления).

21.1. Синхронные измерения

Возможны два варианта подключения сканеров для синхронных измерений. Далее под номером режима подразумевается номер строки в таблице примеров настроек запуска измерений.

Вариант 1.

Все сканеры в системе настраиваются на работу в одном из восьми режимов №2...9 (режим №1 не используется). Источник событий подключается одновременно (параллельно) ко всем сканерам.

Вариант 2.

- В требуемый режим, 1...9, настраивается один из сканеров, в дальнейшем Master.
- Инициализируется выход OUT Master.

- Остальные сканеры (Slave) переводятся в режим 3 с опцией **Mode** Rise.
- Выход Master подключается ко входу Input #1 всех Slave-сканеров.

21.2. Асинхронные измерения

Для выполнения асинхронных измерений сканеры подключаются следующим образом:

- Один из сканеров, в дальнейшем Master, настраивается в требуемый режим, 1...9.
- Остальные сканеры (Slave type 1 и Slave type 2) переводятся в режим 1.
- Для рядом расположенных сканеров (Slave type 1 и Slave type 2) устанавливаются опции **Mode** Fall и **Mode** Rise.
- Инициализируется выход OUT Master.

 Outputs 	
Enable	ON
Mode	Exposure start 🔻
Enable	OFF
Mode	Exposure start 🔻

• Выход Master подключается ко входу Input #1 всех Slave-сканеров.

В результате лазеры сканеров "группа (Master + Slave type 2) " и группа "Slave type 1" будут включаться попеременно.

Замечание: суммарное время накопления сканеров Slave type 1 и Slave Type 2 не должно превышать времени измерительного цикла =1/FPS.

22. Вкладка Dump. Параметры накопленных профилей

Параметры раздела **Dump** определяют работу с накопленными профилями.

22.1. Раздел Dump control. Построение 3D моделей

Параметры раздела **Dump Control** определяют параметры построения 3D моделей.

Настраиваемые параметры:

Параметр	Значение при заводских настройках	Описание
Movement type	Linear	 Определяет тип механической системы перемещения, используемой для получения облака точек: Linear – Линейная система перемещения. Сканер (объект) перемещается по прямолинейной траектории. Radial – Угловая система перемещения. Сканер неподвижен. Сканируемый объект вращается вокруг собственной оси. Ось вращения объекта совпадает с линией Xemr диапазона сканера. Данный режим пригоден для получения облаков точек тел вращения.
Step size	0	Величина шага между измерениями в миллиметрах для системы Linear и в градусах для системы Radial.
Step selector	System Time	Селектор, по которому производится построение облака точек. Значение шага умножается на значение выбранного селектором параметра. • System Time – Временная метка в профиле. • Step counter – Счётчик энкодера. • Measurement counter – Внутренний счётчик измерений.

22.2. Раздел 3D view. Параметры отображения 3D модели

Параметры раздела **3D view** определяют особенности отображения 3D модели, содержащейся в записанном дампе.

No	~
Heightmap	~
	No Heightmap

Доступные параметры:

Параметр	Значение при заводских настройках	Описание
Decimation	No	Прореживание профилей для отображения. Используется для снижения нагрузки на GPU компьютера. В случае необходимости отображения всего набора профилей из дампа (80000) количество отображаемых точек достигает 103680000, что существенно замедляет работу интерфейса. Для устранения этой проблемы рекомендуется прореживать дамп при отрисовке 3D модели. ВАЖНО: данная настройка не влияет на экспорт дампа.
Coloring	Heightmap	Режим раскраски точек профиля. Heightmap - Цвет точки определяется ее высотой.

Параметр	Значение при заводских настройках	Описание
		Intensity - Градации серого, яркость точки определяется интенсивностью отраженного от поверхности излучения (для использования данного режима необходимо включить передачу интенсивности в профиле General > Stream > Intensity = ON).

22.3. Раздел Download. Скачивание профилей

Данный раздел предназначен для сохранения профилей в различных вариантах. Более подробно порядок действий и назначение каждого элемента описаны в разделе <u>22.4.3</u> "Экспорт накопленных профилей".

22.4. Операции с профилями

22.4.1. Накопление профилей во внутренней памяти сканера

Для начала записи профилей в память сканера нажать кнопку **Dump**. После этого каждый профиль, полученный сканером, будет сохранён в его внутренней памяти. Максимальное количество профилей для записи - 80000. Возможна запись только калиброванных профилей (**Data format > Profile**), для формата **Raw** (некалиброванный профиль) кнопка старта записи будет заблокирована. Непосредственно во время записи нельзя изменять формат данных и раздел **Stream** будет недоступен.

ПРИМЕЧАНИЕ: накопление профилей производится в соответствии с установленным режимом запуска измерений (см. п. 20).

22.4.2. Просмотр накопленных профилей

Для просмотра накопленных профилей необходимо открыть вкладку **Dump** нажатием соответствующей кнопки на панели слева:

Для просмотра накопленных профилей необходимо выбрать источник **Dump** в области источника данных.

Dump

В режиме просмотра **Profile** будет отображён выбранный профиль из накопленных во внутренней памяти.

В режиме просмотра **3D** на трёхмерной сцене будут отображены накопленные профили в виде трёхмерного облака точек. Предварительно необходимо настроить параметры отображения в разделе **Dump control** (см. п. <u>22.1</u>), а именно:

- Выбрать тип системы перемещения при получении облака точек (Movement type).
- Указать шаг между измерениями (линейный в мм для типа Linear и угловой в градусах для типа Radial).
- Выбрать селектор, по которому производится построение облака точек (счётчики **Measurement** и **Step**, или временная метка профиля **System time**). Значение шага умножается на значение выбранного селектором параметра.

После настройки отображения необходимо нажать на кнопку обновления После чего начнётся загрузка данных со сканера и последующая отрисовка облака точек.

После изменения каких-либо параметров в разделе Dump control необходимо

нажать кнопку обновления 🧖 для перерисовки облака точек с новыми параметрами.

Примечание: Для корректного просмотра трёхмерного облака точек необходимо наличие в компьютере видеокарты соответствующего уровня. Для просмотра на слабых компьютерах следует корректировать степень прореживания облака. Для выполнения прореживания выбрать соответствующий коэффициент в выпадающем списке **Decimation**.

Для просмотра облака точек с раскраской по яркости необходимо переключить параметр **Coloring** в режим **Intensity**.

Примечание: Раскраска по яркости возможна только, если при записи данных в память значения яркости были включены в пакет профиля (см. п. <u>18.5.</u>). Иначе яркость всех точек будет нулевой (чёрный цвет).

Левой кнопкой мыши производится поворот камеры на трёхмерной сцене, правой кнопкой мыши - смещение сцены в горизонтальной плоскости. Колесом мыши осуществляется масштабирование.

22.4.3. Экспорт накопленных профилей

Экспорт накопленных профилей возможен в три формата:

- Binary экспорт отдельных профилей в специализированном формате. Описание данного формата приведено в руководстве программиста. Для просмотра накопленных профилей в формате bin используйте программу RFProfileView (<u>https://riftek.com/upload/medialibrary/558/RFProfileView.zip</u>).
- 3D экспорт облака точек в формате obj. Данный формат является общедоступным форматом описания 3D геометрии и может быть открыт практически любой программой для работы с 3D-объектами, например, бесплатным ПО MeshLab (ссылка для скачивания: http://www.meshlab.net/#download).
- Table экспорт профилей в таблицу csv. При экспорте в данный формат предоставляется возможность выбрать состав данных. Результаты экспорта могут быть импортированы в редакторы таблиц (MS Excel, WPS Spreadsheet, Libbre Office Calc и т.д.).

 Download 	
Binary Profile, *.bin	Download
3D Surface, *.obj	Download
Table Contents Surface, *.csv	XVYZ Download

23. Вкладка System

23.1. Раздел Information

В разделе Information представлена общая информация о сканере.

Device information	
Work	64h 19m 09s
Total	1585h 23m 33s
CMOS-sensor temperature, °C	47.9
Name	2D laser scanner
Model	Laser scanner
Serial	5509356
Wavelength	650 nm
Firmware version	2.4.0-beta7
Hardware version	18.6.20.0
Calibration date and time	1.1.1970 3:0:0 (UTC +3)
Working ranges	
Base Z (SMR)	80 mm
Range Z (MR)	130 mm
Range X Start (XSMR)	40 mm
Range X End (XEMR)	86 mm

В данном разделе можно изменить имя сканера, отображаемое в верхней области WEB-интерфейса, вписав новое имя в поле **Name** и нажав **Enter**.

23.2. Раздел Update

Данный раздел предназначен для выполнения операций обновления внутреннего ПО сканера и калибровочной таблицы.

23.2.1. Обновление и сохранение внутреннего ПО

Файл обновления внутреннего ПО предоставляет компания-разработчик по мере реализации новых функций и исправления найденных ошибок. Последние версии прошивок доступны по ссылке:

https://cloud.riftek.com/index.php/apps/files/?dir=/RF627 Firmware

Порядок действий для обновления/восстановления внутреннего ПО:

1) Нажать Choose file и выбрать файл прошивки в формате «.2fw».

2) Нажать Upload для загрузки выбранного файла.

Если в процессе загрузки были сбои, то появится ошибка несоответствия контрольной суммы. В этом случае повторно нажмите **Upload**.

Firmware			Firmware			
Element type	Version	CRC	Element type	Version	CRC	
Files			Files			
fpga.bin	2.1.2	ОК	fpga.bin	2.1.2	ОК	
cpu0.bin	2.1.2	OK	cpu0.bin	2.1.2	OK	
Sectors			Sectors			
fsbl_recovery	2.1.2	ERROR	fsbl_recovery	2.1.2	OK	
Choose file 629_2_1_2_fake.2fw	Upload Save	Ł	Choose file 629_2_1_2.2fw	Upload Save	Ł	
Ошибка контрольной суммы			Успешная загрузка			

3) Нажать Start для запуска процесса обновления.

Если после окончания процесса обновления внутреннего ПО и перезагрузки сканера настройки IP-адреса не изменились, то WEB-интерфейс автоматически перезагрузится, не дожидаясь истечения времени таймера. Если же сетевые настройки были изменены, то по истечении времени таймера WEB-интерфейс перезагрузится с IPадресом, заданным по умолчанию (192.168.1.30).

Для обеспечения возможности восстановления сканера после установки неверных параметров, ошибок при обновлении и других случаев предусмотрена возможность сохранить на диск полное внутреннее состояние сканера. При нажатии на кнопку будет сформирован файл, содержащий полное состояние сканера. Восстановление прошивки выполняется в таком же порядке, как и обновление.

Firmware					
Element type	Version	CRC			
Files	Files				
fpga.bin	2.1.2	ОК			
cpu0.bin	2.1.2	ОК			
user_config.mpack		ОК			
recovery_config.mpack		ОК			
log.txt		ОК			
calib.mpack		ОК			
Choose file 2021_06_15_14_05_13.2fw	Upload Save	Ł			
Восстановление сохраненной п	рошивки сканер	а			

23.2.2. Обновление калибровочной таблицы

Calibration table				
Serial	-			
Save date	-			
Save time	-			
CRC	-			
Choose file			Upload	Start

Порядок действий:

- 1) Нажать Choose file и выбрать файл калибровочной таблицы.
- 2) Нажать Upload для загрузки выбранного файла.

Calibration table				
Serial	7057566			
Save date	5.12.2018			
Save time	14:29:50			
CRC	ОК			
Choose file	180000_121_200_60_66_tes100% Upload Start			

3) Нажать Start для запуска процесса обновления.

23.3. Раздел Licenses

Предназначен для отображения статуса и управления лицензиями для "смартблоков" раздела **Smart**.

	Smart block	State	Туре	Started	Time limit			License definition	file	
•	pt2pt_calc_distance		FREE	00h 00m 00s	Unlimited		Smart block	Туре	Started	Time limit
⊷ \	pt2sg_calc_distance	2	FREE	00h 00m 00s	Unlimited		sb_eip	TRIAL	00h 00m 00s	01h 00m 00s
A	sg2sg_calc_distance	~	FREE	00h 00m 00s	Unlimited	+120 <i>F</i> →	sb_udp	TRIAL	00h 00m 00s	01h 00m 00s
~	sg2sg_calc_intersection	~	FREE	00h 00m 00s	Unlimited	Choose file	1.82		100%	ad Save 🛃
-	pt2pt_calc_middle	~	FREE	00h 00m 00s	Unlimited	Unoose me				
1	seg_calc_middle	~	FREE	00h 00m 00s	Unlimited					
deg ⇔rad	sb_convert_deg2rad	~	FREE	00h 00m 00s	Unlimited	i i i				
rad G deg	sb_convert_rad2deg	~	FREE	00h 00m 00s	Unlimited					
mm ⇔inch	sb_convert_mm2inch	~	FREE	00h 00m 00s	Unlimited	1				
inch ⇔mm	sb_convert_inch2mm	~	FREE	00h 00m 00s	Unlimited					
scai Sebool	scalar_to_bool	~	FREE	00h 00m 00s	Unlimited					
scal ⇔int32	scalar_to_int	~	FREE	00h 00m 00s	Unlimited					
scal i⇒float	scalar_to_float	~	FREE	00h 00m 00s	Unlimited					
scal ⇔dbl	scalar_to_double	×	FREE	00h 00m 00s	Unlimited					
scal ⇔int64	scalar_to_int64	~	FREE	00h 00m 00s	Unlimited					
bool ⇔scal	bool_to_scalar	~	FREE	00h 00m 00s	Unlimited					
int32 ⇔scal	int_to_scalar	~	FREE	00h 00m 00s	Unlimited					
fisat ⇔scal	float_to_scalar	~	FREE	00h 00m 00s	Unlimited					
^{db/} ⇔scal	double_to_scalar	~	FREE	00h 00m 00s	Unlimited					
int64 ⇔scal	int64_to_scalar	~	FREE	00h 00m 00s	Unlimited					
seg ⇔2p	seg_to_points	~	FREE	00h 00m 00s	Unlimited					
seg ⇔line	seg_to_line	×	FREE	00h 00m 00s	Unlimited					
2 sog	points_to_seg	~	FREE	00h 00m 00s	Unlimited					
^{2p} ⇔line	points_to_line	~	FREE	00h 00m 00s	Unlimited					
STANKS STA	sb_eip	~	TRIAL	00h 00m 00s	01h 00m 00s					
→upr→	sb_udp	×	TRIAL	00h 00m 00s	01h 00m 00s					
N :	sb_value_tolerance	~	FREE	00h 00m 00s	Unlimited					
M	In_find_trapeze_groove	~	FREE	00h 00m 00s	Unlimited					
~	In_find_corner_joint	~	FREE	00h 00m 00s	Unlimited					
					Ø					

В левой части раздела отображается список блоков, доступных в прошивке сканера, и указан статус лицензии для каждого блока:

Название параметра		Описание					
State	Текущее с	остояние лицензии для блока.					
	~	 Все функции блока доступны. Состояние возможно в следующих типах лицензи FREE - блок не требует лицензии; TRIAL - пробный период блока не истек; FULL - лицензия на блок была приобретена. 					
	×	 FOLL - лицензия на олок оыла приооретена. Блок не функционирует, либо функционирует ограниченно. Состояние возможно в следующих типах лицензии: TRIAL - истек пробный период блока. 					
Туре	Тип лицен	зии.					
	FREE	Блок не требует лицензии, все функции блока доступны.					
	TRIAL	Блок имеет пробный период, по истечении которого функционал ограничивается. Пробный период начинается с момента размещения блока на графе вычислений и продолжается заданное в параметре "Time limit" время.					
	FULL	Лицензия на блок была приобретена.					
Started	Время на данного вр	Время наработки, когда блок был впервые помещен на граф вычислений, начиная от данного времени отсчитывается пробный период.					
Time limit	Время пр блок пере	обного периода, по истечении которого функционал блока ограничивается или стает работать.					

Порядок приобретения лицензии на смарт-блок: 1. Загрузить со сканера файл определения лицензии (кнопка **Download**):

		License definition	file	
	Smart block	Type Started		Time limit
Choose file			Uplo	ad Save 🛃

2. Выслать скачанный файл производителю сканера, оплатить лицензию. После подтверждения оплаты будет выслан ответный файл, который необходимо закачать на сканер (с помощью кнопки **Choose file** необходимо открыть присланный файл, с помощью кнопки **Upload** закачать на сканер):

	License definition	file	
Smart block	Туре	Started	Time limit
License for XXXXXX.lic		Uploa	ad Save
	License definition	file	
Smart block	Туре	Started	Time limit
Smart block sb_eip	Type TRIAL	Started 00h 00m 00s	Time limit 01h 00m 00s
	Smart block License for XXXXXX.lic	License definition Smart block Type License for XXXXXX.lic License definition	License definition file Smart block Type Started License for XXXXXX.lic Uploa

3. После загрузки файла на сканер будет выполнена внутренняя проверка и выведены результаты. На приведенном выше скриншоте файл успешно прошел проверку и содержит данные о продлении пробного периода (тип лицензии: TRIAL, время начала использования сброшено, новая длительность 1 час). Необходимо удостовериться, что полученный файл содержит оплаченные лицензии, при каких-либо несоответствиях необходимо обратиться в службу поддержки производителя сканера.

4. Сохранить лицензию во внутренней памяти сканера, нажав кнопку Save:

		License definition	file	
	Smart block	Туре	Started	Time limit
Stevens	sb_eip	TRIAL	00h 00m 00s	01h 00m 00s
→ UDP→	sb_udp	TRIAL	00h 0 <mark>0</mark> m 00s	01h 00m 00s
Choose file	License for XXXXXX.lic		100% Uploa	ad Save 🛓

5. После сохранения лицензии необходимо удостовериться в правильности внесенных изменений:

	Smart block	State	Туре	Started	Time limit
e () ₽	pt2pt_calc_distance	~	FREE	00h 00m 00s	Unlimited
• •• \	pt2sg_calc_distance	~	FREE	00h 00m 00s	Unlimited
ᠰ᠆ᢣ	sg2sg_calc_distance	~	FREE	00h 00m 00s	Unlimited
¢	sg2sg_calc_intersection	~	FREE	00h 00m 00s	Unlimited
	pt2pt_calc_middle	~	FREE	00h 00m 00s	Unlimited
~	seg_calc_middle	~	FREE	00h 00m 00s	Unlimited
leg ⇒rad	sb_convert_deg2rad	~	FREE	00h 00m 00s	Unlimited
^{ad} →deg	sb_convert_rad2deg	~	FREE	00h 00m 00s	Unlimited
ım →inch	sb_convert_mm2inch	~	FREE	00h 00m 00s	Unlimited
nch → mm	sb_convert_inch2mm	~	FREE	00h 00m 00s	Unlimited
cal →bool	scalar_to_bool	~	FREE	00h 00m 00s	Unlimited
cal →int32	scalar_to_int	~	FREE	00h 00m 00s	Unlimited
cal →float	scalar_to_float	~	FREE	00h 00m 00s	Unlimited
ical ษdbl	scalar_to_double	~	FREE	00h 00m 00s	Unlimited
cal →int64	scalar_to_int64	~	FREE	00h 00m 00s	Unlimited
ool ⇒scal	bool_to_scalar	~	FREE	00h 00m 00s	Unlimited
nt32 →scal	int_to_scalar	~	FREE	00h 00m 00s	Unlimited
oat ⇒scal	float_to_scalar	~	FREE	00h 00m 00s	Unlimited
ы →scal	double_to_scalar	~	FREE	00h 00m 00s	Unlimited
nt64 →scal	int64_to_scalar	~	FREE	00h 00m 00s	Unlimited
seg ⇒2p	seg_to_points	~	FREE	00h 00m 00s	Unlimited
eg → line	seg_to_line	~	FREE	00h 00m 00s	Unlimited
p →seg	points_to_seg	~	FREE	00h 00m 00s	Unlimited
p → line	points_to_line	~	FREE	00h 00m 00s	Unlimited
newson a	sb_eip	~	TRIAL	00h 00m 00s	01h 00m 00s
+UDP→	sb_udp	~	TRIAL	00h 00m 00s	01h 00m 00s
N (* n) (* n)	sb_value_tolerance	~	FREE	00h 00m 00s	Unlimited
N.	In_find_trapeze_groove	~	FREE	00h 00m 00s	Unlimited
N	In_find_corner_joint	~	FREE	00h 00m 00s	Unlimited

23.4. Раздел Logs

Раздел предназначен для просмотра информации о работе сканера для выявления возможных ошибок.

Time		Message
00:00:00	[INFO]	
00:00:00	[INFO]	======STARTING 2D LASER SCANNER===================================
00:00:00	[INFO]	
00:00:00	[]	System monitor module
00:00:00	[RUN]	Setup errors handlers
00:00:00	[INFO]	Success
00:00:00	[RUN]	Init GPIO_PS for leds and button(s)
00:00:00	[INFO]	Success
00:00:00	[RUN]	Init CPU temperature reader
00:00:00	[INFO]	Success
00:00:00	[RUN]	Init temperature sensors reader
00:00:00	[INFO]	Success
00:00:00	[RUN]	System monitor thread
00:00:00	[INFO]	Success
00:00:00	[]	
00:00:00	[]	File system
00:00:00	[RUN]	Low level init
00:00:00	[INFO]	Success
00:00:00	[RUN]	Mount file system
00:00:00	[INFO]	Success
00:00:00	[INFO]	Success
00:00:00	[]	
00:00:00	[]	Device EEPROM module
00:00:00	[RUN]	Physical init EEPROM
00:00:00	[INFO]	I2C clock tet to: 100000
00.00.00	C TNEO 1	Success
Save LOG to int	ternal memory	181/181 🛃 Download 🔻 Save

Вкладка содержит информацию о выполненных операциях и их последовательности. Для получения лог-файла нажать кнопку **Download**.

Возможен экспорт данных в формате *.txt и *.csv. Выбор осуществляется при нажатии кнопки Save.

Опция Save LOG to internal memory включает сохранение лог-файла во внутреннюю память сканера.

24. Вкладка Smart

Вкладка **Smart** предназначена для реализации Smart-функций сканера. Смарт-функции сканера RF627Smart включают:

- формирование пользователем алгоритма измерения различных геометрических и статистических величин контролируемого профиля;
- выполнение сканером измерений в режиме реального времени по заданному алгоритму;
- обработка результатов измерений и автоматическое принятие решений об их нахождении в допустимых пределах (контроль допусков);
- передача результатов измерений по промышленным (Ethernet/IP, Modbus TCP) и упрощенным (UDP) сетевым протоколам;
- формирование управляющих воздействий (например, годен/негоден) на физических выходах сканера.

Для обеспечения простоты и удобства использования смарт-функций применена концепция "графа вычислений" (далее - граф), формируемого пользователем для решения конкретной задачи. Под графом понимается упорядоченная последовательность операций, выполняемых сканером. Последовательность представляется в виде смартблоков и связей между ними. При изменении структуры графа автоматически выполняется его упорядочивание (т.е. определение порядка выполнения вычислений). **Ограничение:** циклические связи в графе не допускаются.

Основное окно WEB-интерфейса с активной вкладкой Smart:

где:

- 1 область смарт-блоков и параметров;
- 2 область построения графа;
- 3 область отображения результатов измерений.

24.1. Область Smart-блоков и параметров

Область предназначена для отображения набора смарт-блоков сканера, настройки параметров блоков, добавленных на граф, и настройки параметров аппроксимации профиля набором отрезков.

Область содержит три вкладки:

- Smart blocks набор смарт-блоков, сгруппированных по функциональному назначению;
- Block settings параметры выделенного на графе блока;
- Profile approximation параметры аппроксимации профиля отрезками.

	C	Л
▼ Feature	detectors	
N. N.	\sim	1
point detector	angle detector	edge detector
M		
segment detector	line approximation	calculate filling

calculate roughness	fixed point	fixed line
Ö		
circle detector	·	
▼ Welding		
templates set	fillet weld	corner weld
lap weld	v-groove weld	square groove weld
• Complex	x shapes	
M	~~	-2, r
trapeze groove	e corner joint	template detector
Math fur	nctions	
Converte	ers	
b. Control		

24.1.1. Вкладка Smart Blocks

Вкладка содержит доступные для использования смарт-блоки. Пиктограмма на смарт-блоке схематично отображает выполняемую им функцию, при этом выходные данные (результат работы блока) отмечены "жирным". Примеры:

	N	
point detector	segment detector	line approximation
смарт-блок выдает точку	смарт-блок выдает отрезок	смарт-блок выдает линию

24.1.2. Вкладка Block Settings

Вкладка предоставляет доступ к настройкам параметров выбранного на графе блока. Примеры:

0. In_find_segment_0)	•	1. In_find_trapeze_gro	pove_0	-	2.	sb_eip_	0					
Mode	first	~	Mode	Mode convex 🗸			nectio	n para	ams				
Index	0		Basis tolerance, deg	2		Inp	ut point			1	01		
Min len, mm	1		Sides angle, deg	10		Output point			1	102			
Max len, mm	100		Sides tolerance, deg	2		Assembly size 32		32					
Angle, deg	0					A	mbly	mon					
Angle tolerance, deg	1					ASSE					01	tout	
						Att	ribute	name		size offer		et	
						pt_f	ind_po	int_0, j	pos	8		0	cı
						ln_f	ind_seg	gment.	_0,	16		8	
						0	1	2	3	4	5	6	7
						8	9	А	в	С	D	Е	F
						10	11	12	13	14	15	16	17
							10		10	10	10	15	11

24.1.3. Вкладка Profile Approximation

Вкладка предоставляет доступ к параметрам алгоритма аппроксимации профиля отрезками линий и дугами.

		л	
 Profile fragmentatio 	n		?
Minimum size, points	5		
	2,512		
 Line approximation 			?
Maximum deviation, mm	1,778		
Maximum amount	45		
 Arc approximation 			?
Enable	ON		
Minimum size, points	5		
Expected radius, mm	2,512	7,079	
Average deviation, mm	0,158		
Merge threshold, mm	1		
 Accurate approxima 	ition		
Outliers filtering	ON		
Line filtering threshold, m	m 0,631		
Arc filtering threshold, mn	n 0,316		

При нажатии на символ вопроса возле названия раздела отображаются пояснения к параметрам данного раздела.

		л	Maximum devia	ition
 Profile fragmentation Minimum size, points 	n	?	ant they	
Divide threshold mm	5			
	10		D > max The maximum dev line. In the place	D < max viation of a point from the where this parameter
 Line approximation 		()	exceeded, the line i	s divided into two
Maximum deviation, mm	1		Maximum amou	unt
Maximum amount	4		À	A
 Arc approximation 		?		·
Enable	ON			
Minimum size, points	20		n = 3 The maximum n approximate a prof	n = 4 umber of lines used i ile fragment
Expected radius, mm	0,01	63,096		
Average deviation, mm	0,5			
Merge threshold, mm	_			

24.2. Создание Smart-функции

Создание Smart-функции выполняется в два этапа: Этап 1 - Аппроксимация профиля. Этап 2 - Построение графа.

24.2.1. Этап 1. Аппроксимация профиля

Аппроксимация профиля является первым этапом настройки смарт-функции сканера. Вкладка "Profile Approximation" предоставляет доступ к параметрам алгоритма аппроксимации профиля отрезками и дугами. Стабильность и точность результатов измерений напрямую зависят от качества аппроксимации профиля. Оптимальная аппроксимация достигается, когда каждая прямая на профиле формирует отрезок, а не ломаную, а окружность аппроксимируется дугой. В сложных случаях, когда особенности профиля не позволяют с достаточной точностью аппроксимировать окружность дугой, возможна аппроксимация набором отрезков с последующей аппроксимацией окружностью специальным смарт-блоком.

Для выполнения аппроксимации необходимо разместить в поле зрения сканера образец контролируемого объекта и добиться требуемого качества профиля в соответствии с процедурами, описанными в п. <u>18</u>.

Алгоритм работы по аппроксимации профиля можно разделить на три последовательно выполняемых этапа:

- 1. Разбиение всей совокупности точек профиля на отдельные фрагменты.
- 2. Разбиение каждого фрагмента на набор аппроксимирующих отрезков и дуг.
- 3. Уточнение аппроксимирующих отрезков и дуг.

24.2.1.1. Разбиение точек профиля на фрагменты

Процедура разбиения на фрагметны предназначена для объединения точек, принадлежащих одной поверхности, но разделенных случайными выбросами или особенностями сканируемого объекта. Кроме того, на данном этапе отбрасываются из дальнейшей обработки фрагменты профиля, содержащие количество точек, менее заданного.

На результаты разбиения влияют два параметра, размещенные в разделе **Profile** fragmentattion:

- Minimum size, points минимально необходимое количество точек во фрагменте профиля для его участия в дальнейшей обработке.
- Divide threshold, mm минимальное расстояние в миллиметрах между двумя последовательными (слева направо) точками профиля, необходимое для объединения данных точек в один фрагмент.

Собственно разбиение производится автоматически путем манипуляции указанными параметрами. Контроль объединения точек в фрагменты производится визуально по результатам аппроксимации профиля отрезками, а именно, если концы последовательных отрезков не соединены, то они относятся к разным контурам. Примеры:

Примеры влияния параметров на разбиение профиля на фрагменты. Параметр **Minimum size**:

· · ·	
Minimum size = 60 точек	Minimum size = 150 точек

Примеры влияния параметров на разбиение профиля на фрагменты. Параметр **Divide threshold**:

24.2.1.2. Разбиение каждого фрагмента на набор аппроксимирующих отрезков и дуг

Каждый фрагмент разбивается на элементы аппроксимации: отрезки и дуги, при этом параметры аппроксимации задаются раздельно для отрезков и для дуг.

24.2.1.2.1. Аппроксимация отрезками

Параметры аппроксимации отрезками:

- Maximum deviation, mm максимально допустимое расстояние в мм, на которое может отстоять точка профиля от аппроксимирующего отрезка. Если очередная точка не соответствует данному критерию, формируется новый отрезок. Таким образом данный параметр влияет на степень детализации аппроксимации.
- Maximum amount максимально допустимое количество линий в фрагменте, которое выполняет роль ограничения для алгоритма аппроксимации. В случае, если для разбиения требуется больше линий, чем задано данным параметром, то значение параметра Maximum deviation игнорируется и разбиение останавливается.

Собственно разбиение производится автоматически путем манипуляции указанными параметрами. Контроль разбиения производится визуально.

Примеры влияния параметров разбиения фрагмента на набор отрезков. Параметр **Divide threshold**:

Примеры влияния параметров разбиения фрагмента на набор отрезков. Параметр **Maximum amount**:

24.2.1.2.2. Аппроксимация дугами

Параметры аппроксимации дугами:

- Enable разрешает использовать дуги при аппроксимации профиля. Если параметр имеет значение OFF, то профиль будет аппроксимироваться только отрезками.
- Minimum size, points задает минимально необходимое количество точек, которые должны составлять дугу. Если элемент профиля включает меньшее количество точек, он будет аппроксимирован отрезком.

- Expected radius, mm задает минимальный и максимальный радиусы окружности дуги. Если в результате аппроксимации элемента профиля получена дуга, радиус окружности которой не укладывается в заданные пределы, то этот элемент будет аппроксимирован отрезком.
- Average deviation, mm допустимое значение средней (по точкам) ошибки аппроксимации элемента профиля дугой. При превышении этого параметра элемент аппроксимируется отрезком.
- Merge threshold, mm порог объединения последовательных (соседних) дуг в одну, задает максимальное отклонение центров окружностей дуг и их радиусов для их объединения в одну дугу с усреднением параметров.

Влияние параметров на аппроксимацию профиля дугами:

24.2.1.3. Уточнение аппроксимирующих отрезков и точек их пересечения

На данном этапе выполняется точное определение координат начала и конца отрезков, аппроксимирующих профиль, и точные координаты пересечений отрезков. Данный этап не содержит параметров.

24.2.2. Этап 2. Построение графа

После выполнения процедуры аппроксимации профиля переходим к построению графа вычислений.

Граф представляет собой ориентированный набор блоков и связей между ними. Целесообразно (но не обязательно) ориентировать граф горизонтально - смарт-блоки, которые извлекают из профиля признаки (точки, сектора линий и др.) размещаются слева. Посередине, в порядке распространения данных, размещаются блоки обработки. Справа блоки передачи результатов измерений на внешние системы и приема сообщений от внешних систем.

В текущей ревизии прошивки сканер позволяет сохранять во внутренней памяти один граф - базовый, который загружается при включении сканера и начинает работать автоматически. Подготовленный граф может быть сохранен на компьютер для использования в других сканерах серии "Smart" или использования в будущем, соответственно, предусмотрена загрузка сохраненного графа в сканер в качестве базового.

В области построения графа также отображается время (в мкс), затраченное на аппроксимацию профиля и просчет графа. Если это время меньше, чем 1/(заданная частота профилей в секундах), обрабатывается каждый профиль, если больше - некоторые профили могут пропускаться и не обрабатываться.

Каждый блок графа имеет уникальный (в пределах графа) идентификатор (номер), отображаемый в правом нижнем углу блока, и позволяющий быстро сопоставить блок и область поиска, в которой он работает. Кроме того, внизу блока располагаются некоторые элементы быстрого доступа для управления блоком. Примеры:

Блок "calculate filling": идентификатор "0",	Блок "seg-seg distance": идентификатор "1",
отображение результатов "Вкл"	отображение результатов "Выкл"

Поместить блок на граф можно, кликнув на нем или переместив его из области **Smart blocks** в область построения графа.

Для создания связи между блоками мышью потянуть выход одного блока ко входу другого блока (или нескольких блоков). Для удобства входы блоков, к которым можно создать конкретную связь, увеличиваются в размере, входы, к которым нельзя подключиться - окрашиваются красным цветом:

При размещении блока в область графа, в области отображения результатов измерения появляется область поиска. Область поиска предназначена для задания области, в которой работает выбранный блок. Перемещать и изменять размеры области поиска можно мышью.

24.2.2.1. Область отображения результатов

Область предназначена для визуального контроля и настройки областей поиска смарт-блоков. В области также отображается результат аппроксимации профиля (набор аппроксимирующих сегментов линий) и результаты работы смарт-блоков.

Как отмечено выше, некоторые блоки имеют области поиска, в пределах которых выполняются функции блока. Использование областей поиска предоставляет возможность исключить из расчетов шумы, засветку сенсора и другие факторы. Область поиска может быть:

- фиксированной,
- следящей по координате Х,
- следящей по координате Z или
- плавающей, т.е. следящей по обеим координатам.

Режим перемещения области поиска выбирается для каждой области отдельно в появляющемся при выборе области меню:

	Search area Search area		Search area		Search area						
Anchor	Fixed	<	Anchor	Track X	~	Anchor	Track Z	~	Anchor	Float	~
Фиксированная область Следящая по Хоб		я по Хоблас	СТЬ	Следяща	ая по Z обла	сть	Плаван	ощая област	ГЬ		

В любом режиме перемещения области пользователь имеет возможность перемещать и изменять размер самой области. Перемещение выполняется с помощью правой клавиши мыши (нажать на область поиска и перемещать мышь). Изменение размеров осуществляется с помощью специальных прямоугольников, расположенных по периметру области поиска:

24.2.2.2. Пример построения графа

В качестве иллюстрации процесса построения графа для решения конкретной практической задачи найдем расстояние между точками 1 и 2 (широкое основание трапеции) на профиле и передадим его по протоколу Ethernet/IP внешнему контроллеру.

24.2.3. Как это работает

Контролируемая деталь помещается в поле зрения сканера. Собранный граф просчитывается для каждого сформированного сканером профиля детали.

В первую очередь с помощью областей поиска блоков "segment detector" на профиле выделяются первый и последний отрезки линий. Каждая из областей поиска может быть как "следящей" (по X, по Z или по обеим координатам сразу) так и "фиксированной" (по умолчанию). Поведение для каждой области поиска можно задать параметром, появляющимся при клике на соответствующую область поиска:

Кеню выбора поведения области поиска

Меню выбора поведения области поиска (фиксированная, сопровождение по X, сопровождение по Z или по обеим координатам сразу)

Если области поиска являются следящими, то при перемещении детали в рабочем диапазоне сканера они автоматически изменяют свое положение таким образом, чтобы расположить детектируемый отрезок в своем центре (центре области поиска). При исчезновении детали (отрезки отсутствуют) следящие области поиска возвращаются в координаты, заданные пользователем при настройке графа (т.е. в исходное положение).

Выделенные отрезки поступают в блок "seg-seg distance", настроенный на вычисление расстояния между правой точкой первого отрезка и левой точкой последнего отрезка. Если один из отрезков (или оба) не обнаружен, блок выдает значение с флагом "результат не валиден" (используется внутреннее представление расстояния типа SDT_SCALAR, см. п. 24.3.1.).

Далее внутреннее представление расстояния преобразовывается в общий тип "float" (блок "scal->float") для дальнейшего вывода в сборку (в терминах Ethernet/IP). Если на входе расстояние "не валидно", результат будет "NaN" (Not a Number).

Последний блок ("eip") принимает расстояние в общем типе "float" и размещает его во входной сборке, которая отправляет данные в сеть.

В конечном итоге, внешняя система (адаптер в терминах Ethernet/IP) может подключиться к сканеру и получить значение вычисленного расстояния.

Видео-примеры построения и работы Smart-функций можно посмотреть здесь: <u>https://youtu.be/7pqpQTdg51o</u>

24.2.4. Сохранение и загрузка Smart-функции

Для сохранения/загрузки Smart-функции воспользуйтесь соответствующими кнопками, расположенными в верхней части области построения графа:

1

Кнопка загрузки графа с компьютера в сканер. Загруженный граф заменяет текущий граф и начинает автоматически вычисляться.

24.3. Набор смарт-блоков

24.3.1. Типы данных

Каждый смарт-блок оперирует определенным типом (несколькими типами) данных, представляющими результаты измерений, логические сигналы и т.д. Порядок байт (если не указано иное) LITTLE-ENDIAN. Описание типов данных представлено в таблице:

Псевдоним	Тип	Описание					
внутренние типы	Используются составными (с для ввода и вь	для передачи информации внутри графа. Как правило, являются одержат несколько полей) и в общем случае не должны использоваться вода данных от/к внешним системам (EthernetIP, UDP и т.д.).					
SDT_SCALAR	scalar_t	Скаляр. Представляет одно значение результатов измерений или сигнала. В текущей ревизии соответствует типу данных "float". В будущих ревизиях представление этого типа может измениться.					
SDT_POINT	point_t	Точка. В текущей ревизии представляет собой структуру:					
		{					
		float X;					
		}					
SDT_RECT	rect_t	Грямоугольник. В текущей ревизии представляет собой структуру: {					
		point_t topLeft;					
		float w;					
		float h;					
		}					
SDI_SEGMENT	segment_t	Отрезок линии. В текущеи ревизии представляет собои структуру:					
		point t p1;					
		point_t p2;					
		}					
SDT_LINE	line_t	Линия. В текущей ревизии представляет собой структуру: {					
		float a;					
		float b;					
		float C;					
SDT_CIRCLE	circle_t	л Окружность. В текущей ревизии представляет собой структуру:					
		{ noint t center:					
		float r:					
		}					
общие типы	Используются приема данн преобразован	для передачи данных внешним (по отношению к сканеру) устройствам и ных от них. Используются совместно со специальными блоками ия.					
SDT_BOOL	bool_t	Логическое значение, имеющее два взаимоисключающих состояния "TRUE" и "FALSE". Соответствует типу uint8 со схемой кодирования: 0 - "FALSE"; другое - "TRUE".					
SDT_FLOAT	float	Значение с плавающей точкой одинарной точности (размер 4 байта).					
SDT_INT	int32_t	Целочисленное знаковое значение (размер 4 байта).					
SDT_DOUBLE	double	Значение с плавающей точкой двойной точности (размер 8 байт).					
SDT_INT64	int64_t	Целочисленное знаковое значение (размер 8 байт).					

24.3.2. Разделы

Смарт-блоки сгруппированы в следующие разделы:

- 1. "Feature detectors" смарт-блоки, предназначенные для извлечения примитивов (точки, линии, углы и т.д.) из профиля.
- 2. "Welding" смарт-блоки, предназначенные для решения задач сварки, таких как детектирование сварного соединения и измерение его параметров.
- 3. "Complex shapes" смарт-блоки, выполняющие детектирование элементов сложной формы (трапеции, угловые соединения и т.д.) с учетом особенности формы детектируемого элемента.
- 4. "Math functions" смарт-блоки, выполняющие математические операции над примитивами (вычисление расстояний, углов, преобразование единиц измерения и т.д.).
- 5. "Converters" смарт-блоки для выполнения преобразований (преобразование типов, преобразование единиц измерений, объединение и декомпозиция примитивов и т.д.).
- 6. "Control" смарт-блоки контроля нахождения измеряемых величин в допуске.
- 7. "Input and output" смарт-блоки вывода результатов измерений и других сигналов и ввода в граф информации от внешних систем.

24.3.2.1. Раздел "Feature detectors"

point detector	"point detector" - поиск точки на профиле.					
Параметры:	"Mode"	min X Точка профиля с минимальной координатой X.			цинатой Х.	
		min Z	Точка профиля с	смин	чимальной коорд	цинатой Z.
		max X	Точка профиля с	смак	симальной коор	динатой Х.
		maxZ	Точка профиля с	смак	симальной коор	динатой Z.
		average	Точка профиля точек профиля.	I C	усредненными	координатами
•	min X	mir				
	maxZ				average	
min X	min Z	max X	Координаты точн	ки.		
angle detector	"angle detector" - поиск	угла между двумя	отрезками на про	фил	e.	

Параметры:	"Mode"	top	Угол, вершина которог координату Z.	о имеет максимальную	
		bottom	Угол, вершина которо координату Z.	го имеет минимальную	
		left	Угол, вершина которо координату Х.	го имеет минимальную	
		right	Угол, вершина которог координату Х.	ю имеет максимальную	
		value	Первый угол, удовлетворя average" и "Angle tolerance	яющий параметрам "Angle з".	
	"Angle value"	0179	Искомое значение угла.		
	"Angle tolerance"	089	Максимально допустими стороны) от искомого угла	ое отклонение (в обе 1.	
			er f		
te	ор	bottom	left	right	
* 2 53.50 23.50 20 20 20 20 20 20 20 20 20 20 20 20 20			2	76.37	
"Angle va "Angle tole	alue" = 24, "Ang erance" = 2 "Angl	le value" = 99, e tolerance" = 2	"Angle value" = 105, "Angle tolerance" = 2	"Angle value" = 25, "Angle tolerance" = 2	
Выходы:	"pos"	SDT_POINT	Координаты вершины угла	а.	
	"angle"	SDT_SCALAR	Значение угла в градусах.		
	•	•	•		
edge detector	edge detector" - поиск перепада высоты между двумя отрезками на профиле.				
Параметры:	"Mode"	rise			
			перепад высоты вверх.		
		fall	Перепад высоты "вниз".		
		fall	Перепад высоты высрх. Перепад высоты "вниз". Любое направление п осуществляется по высоте	ерепада высоты, выбор перепада.	
	riao	fall any	Перепад высоты высух. Перепад высоты "вниз". Любое направление п осуществляется по высоте	ерепада высоты, выбор е перепада.	
	rise	fall any	Перепад высоты высрх . Перепад высоты "вниз". Любое направление п осуществляется по высоте	ерепада высоты, выбор е перепада.	
	rise "Min step", mm	fall any	Перепад высоты высрх . Перепад высоты "вниз". Любое направление п осуществляется по высоте Минимально допустимая перепада, направление н	ерепада высоты, выбор е перепада. ининования апу для обнаружения высота е учитывается.	

РФ627, РФ627Smart [Версия документа 2.1.2] 20.09.2021

70

first, constr			last, constr		
	"Index"	0256	Индекс отрезка на профиле, используется в режиме "Mode" = "by index".		
	"Min Ien", mm	0,011000	Минимальная длина отрезка на профиле, используется в режимах "Mode" = "first, constr." и "Mode" = "last, constr.".		
	"Max len", mm	0,011000	Максимальная длина отрезка на профил используется в режимах "Mode" = "first, constr." "Mode" = "last, constr.".		
	"Angle", deg	-9090	Угол наклона отрезка относительно горизонтальной оси, используется в режимах "Mode" = "first, constr." и "Mode" = "last, constr.".		
	"Angle tolerance", deg	089	Допуск (в обоих направлениях) угла наклона отрезка относительно горизонтальной оси, используется в режимах "Mode" = "first, constr." и "Mode" = "last, constr.".		
Выходы:	"seg"	SDT_SEGMENT	Отрезок, соответствующий параметрам блока.		
line approximation	"line approximation" - аппроксимация точек профиля (в двух областях) линией.				
			0-B		
исходный профиль без аппроксима аппроксимации фрагм		аппроксима фрагм	аппроксимация верхних аппроксимация верхних офрагментов		
Выходы:	"line"	SDT_LINE Линия, аппроксимирующая точки, находящие областях.			
calculate filling	"calculate filling" - вычисление суммарной площади отклонения профиля от базовой входной линии.				
Параметры	"Mode"	above	Учитывать точки, лежашие выше базовой пинии		
		below	Учитывать точки, лежащие ниже базовой линии.		

71

	0 2156	1-B			
	above		below		
Параметры:	"Threshold", mm	0,01100	Порог отклонения от базовой линии, отклонения менее порога не учитываются - считаются шумом.		
	"Threshold" = 0,01 м	М	"Threshold" = 0,1 мм		
Входы:	"in1"	SDT_LINE	Базовая линия, относительно которо анализируются отклонения.		
Выходы:	"area"	SDT_SCALAR	Суммарная площадь отклонений, mm^2.		
calculate roughness	"calculate roughness" · линии.	- вычисление шер	оховатости профиля относительно входной базовой		
Параметры:	"Mode"	std. dev.	Стандартное отклонение.		
		pos dev	Максимальное положительное отклонение (вверх относительно базового сегмента).		
		neg dev	Максимальное отрицательное отклонение (вниз относительно базовой линии).		
	√008		-\$*0.13 		
	std. dev.	pos	dev neg dev		
Входы:	"in1"	SDT_SEGMENT Базовый отрезок, относительно анализируется шероховатость.			
Выходы:	"value"	SDT_SCALAR	Значение шероховатости mm, mm^2.		
fixed point	"fixed point" - фиксиров	анная точка (поло)	кение не зависит от профиля).		
Параметры:	"Position by X", mm	0,011000	Положение точки по оси Х.		
	"Position by Z", mm	0,011000	Положение точки по оси Z.		

24.3.2.2. Раздел "Welding"

15	
	21
3	templates set

"templates set" - набор шаблонов для роботизированной сварки, детектируемый шаблон может задаваться пользователем через параметры блока или внешней системой с использованием специального входа блока.

Параметры:	"General"		Группа общих параметров блока.
	"Seam type"	trapeze groove	Разделка сварного шва в виде трапеции:
		v-groove	Разделка сварного шва в виде буквы V:
		fillet	Разделка сварного шва в виде угла:
		lap left	Разделка сварного шва в виде ступеньки, при этом высокая часть находится слева:
		lap right	Разделка сварного шва в виде ступеньки, при этом высокая часть находится справа:

"Trapeze groove":		Группа параметров шаблона "trapeze groove" Обозначение отрезков и углов:
"Min len (segment 1)", mm	0,11000	Минимальная и максимальная длина отрезк
"Max len (segment 1)", mm	0,11000	№1.
"Min len (segment 2)", mm	0,1100	Минимальная и максимальная длина отрезк
"Max len (segment 2)", mm	0,1100	№2.
"Min len (segment 3)", mm	0,1100	Минимальная и максимальная длина отрезк
"Max len (segment 3)", mm	0,1100	№3.
"Min len (segment 4)", mm	0,1100	Минимальная и максимальная длина отрезк
"Max len (segment 4)", mm	0,1100	№4.
"Min len (segment 5)", mm	0,11000	Минимальная и максимальная длина отрезк
"Max len (segment 5)", mm	0,11000	№5.
"Angle #1", deg "Angle #1 tolerance", deg	-9010 045	Значение и допустимое отклонение угла №1.
"Angle #2", deg "Angle #2 tolerance", deg	-9010 045	Значение и допустимое отклонение угла №2.
"Min len (segment 1)", mm	0,11000	Минимальная и максимальная длина отрезк
"Max len (segment 1)", mm	0,11000	№1.
"Min len (segment 2)", mm	0,1100	Минимальная и максимальная длина отрезк
"Max len (segment 2)", mm	0,1100	№2.
"Min len (segment 3)", mm	0,1100	Минимальная и максимальная длина отрезк
"Max len (segment 3)", mm	0,1100	№3.
"Min len (segment 4)", mm	0,11000	Минимальная и максимальная длина отрезн
"Max len (segment 4)", mm	0,11000	№4.
"Angle #1", deg "Angle #1 tolerance", deg	-9010 045	Значение и допустимое отклонение угла №1.
"Angle #2", deg "Angle #2 tolerance", deg	50150 089	Значение и допустимое отклонение угла №2.
"Angle #3", deg "Angle #3 tolerance", deg	-9010 045	Значение и допустимое отклонение угла №3.
"Fillet":		Группа параметров шаблона "fille: Обозначение отрезков и углов:

		left right
"Min len (left)", mm "Max len (left)", mm	0,11000 0,11000	Минимальная и максимальная длина отрезка слева.
"Min len (right)", mm "Max len (right)", mm	0,11000 0,11000	Минимальная и максимальная длина отрезка справа.
"Max distance", mm	0,1100	Максимально допустимое расстояние между концом левого отрезка и началом правого, минимально допустимое равно 0.
"Angle", deg "Angle tolerance", deg	50150 089	Значение и допустимое отклонение угла №1.
"Lap left":		Группа параметров шаблона "lap left". Обозначение отрезков и углов:
"Min len (segment 1)", mm "Max len (segment 1)", mm	0,11000 0,11000	Минимальная и максимальная длина отрезка №1.
"Min len (segment 2)", mm "Max len (segment 2)", mm	0,1100 0,1100	Минимальная и максимальная длина отрезка №2.
"Min len (segment 3)", mm "Max len (segment 3)", mm	0,11000 0,11000	Минимальная и максимальная длина отрезка №3.
"Angle #1", deg "Angle #1 tolerance", deg	-15030 089	Значение и допустимое отклонение угла №1.
"Angle #2", deg "Angle #2 tolerance", deg	30150 089	Значение и допустимое отклонение угла №2.
"Lap right":		Группа параметров шаблона "lap right". Обозначение отрезков и углов:
"Min len (segment 1)", mm "Max len (segment 1)", mm	0,11000 0,11000	Минимальная и максимальная длина отрезка №1
"Min len (segment 2)", mm "Max len (segment 2)", mm	0,1100 0,1100	Минимальная и максимальная длина отрезка №2.
"Min len (segment 3)", mm "Max len (segment 3)", mm	0,11000 0,11000	Минимальная и максимальная длина отрезка №3.
"Angle #1", deg "Angle #1 tolerance", deg	30150 089	Значение и допустимое отклонение угла №1.

	"Angle #2", deg "Angle #2 tolerance", deg	-15030 089	Значение и допустимое отклонение угла №2.				
Входы:	"idx"	SDT_INT	Индекс используемого шаблона. Порядок как в настоящем документе: 0 - "trapeze groove" и т.д.				
Выходы:	"det"	SDT_BOOL	Флаг успешного обнаружения шаблона (шов распознан, выдаются корректные данные).				
	"pt 1"	SDT_POINT	Координаты первой точки.				
fillet weld	"fillet weld" - угловой сварной шов, параметры блока аналогичны параме соответствующего шаблона блока "templates set".						
Выходы:	"det"	SDT_BOOL	Флаг успешного обнаружения шаблона (стык распознан, выдаются корректные данные).				
	"left segment"	SDT_SEGMENT	Левый сегмент, составляющий уголок.				
	"right segment"	SDT_SEGMENT	Правый сегмент, составляющий уголок.				
	•						
corner weld							
Параметры:	"Min len (segment 1)", mm "Max len (segment 1)", mm	0,11000 0,11000	Минимальная и максимальная длина отрезка №1.				
	"Min len (segment 2)", mm "Max len (segment 2)", mm	0,1100 0,1100	Минимальная и максимальная длина отрезка №2.				
	"Min len (segment 3)", mm "Max len (segment 3)", mm	0,1100 0,1100	Минимальная и максимальная длина отрезка №3.				
	"Min len (segment 4)", mm "Max len (segment 4)", mm	0,11000 0,11000	Минимальная и максимальная длина отрезка №4.				
	"Max distance", mm	0,1100	Максимально допустимое расстояние между концом левого отрезка и началом правого, минимально допустимое равно 0.				
	"Angle #1", deg "Angle #1 tolerance", deg	-15050 089	Значение и допустимое отклонение угла №1.				
	"Angle #2", deg "Angle #2 tolerance", deg	50150 089	Значение и допустимое отклонение угла №2.				
	"Angle #3", deg "Angle #3 tolerance", deg	-15050 089	Значение и допустимое отклонение угла №3.				
Выходы:	"det"	SDT_BOOL	Флаг успешного обнаружения шаблона (стык распознан, выдаются корректные данные).				
	"segment #1"	SDT_SEGMENT	Отрезок №1.				
	"segment #2"	SDT_SEGMENT	Отрезок №2.				
	"segment #3"	SDT_SEGMENT	Отрезок №3.				
	"segment #4"	SDT_SEGMENT	Отрезок №4.				

v-groove weld

"lap weld" - нахлесточный сварной шов, параметры блока аналогичны параметрам шаблона "lap left" блока "templates set". lap weld Выходы: "det" SDT_BOOL Флаг успешного обнаружения шаблона (стык распознан, выдаются корректные данные). "segment#1" SDT_SEGMENT Отрезок №1. 'segment #2" SDT_SEGMENT Отрезок №2. "segment #3" SDT_SEGMENT Отрезок №3.

"v-groove weld" - сварной шов в форме буквы V, параметры блока аналогичны параметрам соответствующего шаблона блока "templates set".

Выходы:	"det"	SDT_BOOL	Флаг успешного обнаружения шаблона (стык распознан, выдаются корректные данные).
	"segment#1"	SDT_SEGMENT	Отрезок №1.
	"segment #2"	SDT_SEGMENT	Отрезок №2.
	"segment #3"	SDT_SEGMENT	Отрезок №3.
	"segment #4"	SDT_SEGMENT	Отрезок №4.
	o oginione n		

"square groove weld" - сварной шов с квадратным пазом:					
square groove weld					
Параметры:	"Min len (left segment)", mm "Max len (left segment)", mm	0,11000 0,11000	Минимальная и максимальная длина отрезка слева.		
	"Min len (right segment)", mm "Max len (right segment)", mm	0,1100 0,1100	Минимальная и максимальная длина отрезка справа.		
	"Min distance", mm "Max distance", mm	0100 0,1100	Минимально и максимально допустимое расстояние между концом левого отрезка и началом правого.		
	"Angle", deg "Angle tolerance", deg	-15050 089	Значение и допустимое отклонение угла между отрезками.		
Выходы:	"det"	SDT_BOOL	Флаг успешного обнаружения шаблона (стык распознан, выдаются корректные данные).		
	"left segment"	SDT_SEGMENT	Отрезок слева.		
	"right segment"	SDT_SEGMENT	Отрезок справа.		

24.3.2.3. Раздел "Complex shapes"

	trapeze groove	"trapeze groove" - поиск на профиле трапециевидного паза, образованного пятью отрезками (один отрезок слева от трапеции, три отрезка составляют трапецию и один отрезок справа от трапеции).				
П	араметры:	"Mode"	convex Выпуклая трапеция.			
			concave	Вогнутая трапеция (углубление).		

24.3.2.4. Раздел "Math functions"

	× 4 seg 2p 1 3 5 seg 2p 5 seg 2p 2 4				
	+	2			
Вычисление с	редней точки м двух отре	иежду крайними точка эзков	ами	Вычисление средней точки между вершиной угла и одной из точек трапеции	
Входы:	"in1"	SDT POINT	Точ	 ка №1.	
	"in2"	SDT_POINT	Точ	ка №2.	
Выходы:	"middle"	SDT POINT	Сре	едняя точка.	
middle of line segment					
		Вычисление центр	а пр	оизвольного сегмента	
Входы:	"in1"	SDT_SEGMENT	Сег	мент.	
Выходы:	"middle"	SDT_POINT	Сре	едняя точка.	
$2D \rightarrow 3D$ point 2D to 3D	"point 2D to 3D" - преобразование точки из локальной 2D системы координат сканера в 3 систему координат внешнего устройства. Преобразование выполняется в соответствии о следующими выражениями: X = X ₀ + x*A ₀ + y*A ₁ Y = Y ₀ + x*A ₂ + y*A ₃ Z = Z ₀ + x*A ₂ + y*A ₃ Z = Z ₀ + x*A ₄ + y*A ₅ где: X, Y, Z - координаты точки в 3D системе координат внешнего устройства; X ₀ , Y ₀ , Z ₀ - калибровочные смещения; A[6] - коэффициенты матрицы поворота;				
Dura en u	х, у - координ	аты точки в 20 систем	ле ко Т—	ординат сканера.	
входы:	"IN"		104	Ka.	
выходы:	X	SD1_SCALAR	KOO VCTC	рдината х в зо системе координат внешнего ройства.	

	"У"	SDT_SCALAR	Координата Y в 3D системе координат внешнего устройства.
	"Z"	SDT_SCALAR	Координата Z в 3D системе координат внешнего устройства.
$2D \rightarrow 3D$ segment 2D to 3D	"segment 2D сканера в 3[точек концов	to 3D" - преобразова О систему координат сегмента как в "poin	ание сегмента линии из локальной 2D системы координат г внешнего устройства. Преобразование выполняется для t 2D to 3D".
Входы:	"in"	SDT_SEGMENT	Сегмент.
Выходы:	"x1"	SDT_SCALAR	Координата X левой точки в 3D системе координат внешнего устройства.
	"y1"	SDT_SCALAR	Координата Y левой точки в 3D системе координат внешнего устройства.
	"z1"	SDT_SCALAR	Координата Z левой точки в 3D системе координат внешнего устройства.
	"x2"	SDT_SCALAR	Координата X правой точки в 3D системе координат внешнего устройства.
	"y2"	SDT_SCALAR	Координата Y правой точки в 3D системе координат внешнего устройства.
	"z2"	SDT_SCALAR	Координата Z правой точки в 3D системе координат внешнего устройства.
scalar filtering	"scalar filterin выполняется значений ме (параметры "	g" - фильтрация пост медианным фильтр эжет выполняться 'Smoothing filter" и "Fi	гупающих значений скаляра. Предварительная фильтрация ром, задаваемым параметром "Median filter", сглаживание простым усреднением или билатеральным фильтром ilter size").
Параметры:	"Median filter"	disabled	Медианная фильтрация не выполняется.
		3 values	Медианная фильтрация по 3-м значениям.
		5 values	Медианная фильтрация по 5-и значениям.
		7 values	Медианная фильтрация по 7-и значениям.
	"Smoothing filter"	average	Сглаживание (если параметр "Filter size" != disabled) выполняется усредняющим фильтром.
		bilateral	Сглаживание (если параметр "Filter size" != disabled) выполняется билатеральным фильтром.
	"Filter size"	disabled	Сглаживание не выполняется.
		3 values	Сглаживание по 3-м значениям.
		5 values	Сглаживание по 5-и значениям.
		7 values	Сглаживание по 7-и значениям.
		9 values	Сглаживание по 9-и значениям.
		11 values	Сглаживание по 11-и значениям.
		13 values	Сглаживание по 13-и значениям.
		15 values	Сглаживание по 15-и значениям.
Входы:	"in1"	SDT_SCALAR	Входное значение для фильтрации.
Выходы:	"out"	SDT_SCALAR	Выходное фильтрованное значение.

24.3.2.5. Раздел "Converters"

scal ⇔bool	"scalar to bool" - преобразование скаляра в логический тип. Преобразование выполняе по следующим правилам: значение скаляра больше "0" - значение логического типа "TRI иначе "FALSE".						
scalar to bool	Входы:	"in"	SDT_SCALAR	Скаляр.			
	Выходы: "out" SDT_BOOL Логическое значение.						

^{scal} ⇔int32	"scalar to int32" - преобразование скаляра в целочисленный тип (размер 4 байта Преобразование выполняется с округлением к наименьшему (в абсолютном значени целому.					
scalar to int32	Входы:	"in"	SDT_SCALAR	Скаляр.		
	Выходы:	"out"	SDT_INT	Целочисленное значение.		
scal ⇒float	"scalar to ir точность).	nt32" - прео	бразование скаляр	а в тип данных с плавающей точкой (одинарная		
and an in Succession	Входы:	"in"	SDT_SCALAR	Скаляр.		
scalar to float	Выходы:	"out"	SDT_FLOAT	Значение в формате с плавающей точкой.		
scal → dbl	"scalar to d точность).	ouble" - пре	еобразование скаля	яра в тип данных с плавающей точкой (двойная		
	Входы:	"in"	SDT_SCALAR	Скаляр.		
double	Выходы:	"out"	SDT_DOUBLE	Значение в формате с плавающей точкой.		
scalar to int64	Преобразо целому. Входы:	вание выпо "in"	SDT_SCALAR	нием к наименьшему (в абсолютном значении) Скаляр.		
	Выходы:	"out"	SD1_IN164	Целочисленное значение.		
bool to scalar	Входы: Выходы:	"in" "out"	SDT_BOOL SDT_SCALAR	Логическое значение. Скаляр.		
	"int32 to scalar" - преобразование целочисленного значения (размером 4 байта) в скаляр.					
scal	Входы:	"in"	SDT_INT	Целочисленное значение.		
int32 to scalar	Выходы:	"out"	SDT_SCALAR	Скаляр.		
float ⇒ scal	"float to sca точности в с Входы: Выходы:	alar" - прео скаляр. "in" "out"	бразование значен SDT_FLOAT SDT SCALAR	ния в формате с плавающей точкой одинарной Значение в формате с плавающей точкой. Скаляр.		
	выходы	out				
^{dbl} ⇔scal	"double to scalar" - преобразование значения в формате с плавающей точкой двойн точности в скаляр.					
	Входы:	"in"	SDT_DOUBLE	Значение в формате с плавающей точкой.		
double to scalar	Выходы:	"out"	SDT_SCALAR	Скаляр.		
1 10 1	"int64 to sca	ılar" - преобі	разование целочисл	пенного значения (размером 8 байт) в скаляр.		
int64	Входы:	"in"	SDT INT64	Целочисленное значение.		
int64 to scalar	Выходы:	"out"	SDT_SCALAR	Скаляр.		

b rad	угловую вел	ичину в ради	анах.	
	Входы:	"in"	SDT_SCALAR	Скаляр в градусах.
deg to rad	Выходы:	"result"	SDT_SCALAR	Скаляр в радианах.
	"rad to dec	л" - преобр	азование скапярн	ой угловой величины заланной в ралиана;
^{rad} ⇒deg	скалярную	угловую вели	ичину в градусах.	
rad to deg	Входы: Выходы:	"in" "result"	SDT_SCALAR SDT_SCALAR	Скаляр в радианах. Скаляр в градусах.
mm ⇒inch	"mm to inch скалярную	" - преобра: пинейную ве	зование скалярной еличину в дюймах.	линейной величины, заданной в миллиметра
· mon	Входы:	"in"	SDT_SCALAR	Скаляр в мм.
mm to inch	Выходы:	"result"	SDT_SCALAR	Скаляр в дюймах.
inch	"inch to mr	n" - преобр	разование скалярн	ой линейной величины, заданной в дюйма
<i>⇒mm</i>	Вхолы	"in"		рал. Скапяр в мм
inch to mm	Выхолы:	"result"	SDT_SCALAR	Скаляр в мм.
			_	
seg → 2p	"seg to two сегмента.	points" - пре	еобразование сегме	ента линии в две точки, соответствующие кон
	Входы:	"in"	SDT_SEGMENT	Сегмент линии.
points	Выходы:	"left"	SDT_POINT	Точка, соответствующая левому концу отре (меньшая координата X).
		"right"	SDT_POINT	Точка, соответствующая правому концу отре (большая координата X).
	<i>"</i> , , , ,			
seg ⇒ line	"seg to line смещением	:" - преобра I.	зование сегмента	линии в линию с соответствующим наклоном
· mile	Входы:	"in"	SDT_SEGMENT	Сегмент линии.
seg to line	Выходы:	"out"	SDT_LINE	Линия.
	"two points t	о seq" - пре	образование двух т	очек, соответствующих концам сегмента в сегм
²p ⇔seg	линии.			
two points to	Входы:	"left"	SDT_POINT	Точка, соответствующая левому концу отре (меньшая координата X).
208		"right"	SDT_POINT	Точка, соответствующая правому концу отре (большая координата X).
	Выходы:	"out"	SDT_SEGMENT	Сегмент линии.
1	"two points t	о line" - прес	образование лвух то	учек в пинию.
^{2p} ⇒line	Входы:	"left"	SDT_POINT	Точка, соответствующая левому концу отре
two policite to			_	(меньшая координата Х).
line		"right"	SDT_POINT	Точка, соответствующая правому концу отре (большая координата X).
	Выходы:	"out"	SDT LINE	Линия.

24.3.2.6. Раздел "Control"

(+n) "value tolerance" - проверка входного скалярного значения на попадание параметрами диапазон.									
• (-1)	Входы:	"in"	SDT_SCALAR	Проверяемое значение.					
value tolerance	Выходы:	"result"	SDT_SCALAR	Результат проверки.					
*	"scanner laser" - управление лазером, установленным в сканере.								
scanner laser	Входы:	"enable"	SDT_BOOL	Включение лазера на излучение (TRUE) или отключение (FALSE).					
		"result"	SDT_INT	Яркость излучения в процентах.					
	"scanner	ROI" - управл	ение регионом и	нтереса, который обрабатывает сканер.					
	Входы:	"enable"	SDT_BOOL	Включение и отключение области интереса.					
		"pos"	SDT_FLOAT	Положение области интереса в мм.					
scanner ROI		"size"	SDT_FLOAT	Размер области интереса в мм.					
ţ	"scanner	sensor" - упр	авление параме	грами CMOS-сенсора, установленного в устройстве.					
scanner	Входы:	"pps"	SDT_INT	Требуемое количество профилей в секунду (может ограничиваться режимом работы сканера).					
sensor		"expose1"	SDT INT	Время экспонирования кадра в мкс.					

24.3.2.7. Раздел "Input and output"

EtherNedip	"Etnernet/IP" - блок п Допускается размеш	ередачи и приема ение только одного	данных по промышленному протоколу Etnernet/IP. э экземпляра данного блока на графе.
Параметры:	"Input point"	1256	Номер входной сборки (в соответствии со спецификацией EIP).
	"Output point"	1256	Номер выходной сборки (в соответствии со спецификацией EIP).
	"Assemblysize"	1512	Размер сборок в байтах.
	"Assembly map"	Input	Распределение входов блока по входной сборке, значения входов будут расположены в соответствии с данным параметром.
			Input Output
			Attribute name Size Offset
			pt_find_point_0, pos 8 0
			In_find_line_0, seg 16 8
			0 1 2 3 4 5 6 7
			8 9 A B C D E F
			10 11 12 13 14 15 16 17
			18 19 1A 1B 1C 1D 1E 1F
	"Assembly map"	Output	Распределение выходов блока по выходной сборке, значения выходов должны быть расположены в соответствии с данным параметром.

			Ċ.	Inpu	Jt.			C	Dutp	out					
			Attrib	Attribute name					(Offse	t				
			sb_eip	_0, ot	ıt		ĺ	1	T	0					
			sb_eip	_0, ot	ıt			4	I	1					
			sb_eip	_0, ot	ıt			4		5					
			0	1	2	3	4	5	(6	7				
			8	9	A	в	с	D	i .	E	F				
			10	11	12	13	14	15	5	16	17				
			18	19	1A	1B	10	10	, ,	1E	1F				
Входы:	Создаются пользова	 птелем с помощью к	онтекс	стно	го м	лен	ю.								
		A C+	DD INPUT	rs		I.									
		Boo	lean												
		Floa	it												
		Inte	ger												
		Dou	ble												
		Inte	ger64												
		Poir	nt												
		Rec	tangle												
		Line	segmer	nt											
		Line	Line												
		Circ	le												
		Area	a												
		G+ A	DD OUTP	UTS		I.									
		Boo	lean			1									
		Floa	it												
Выходы:	Создаются пользова	телем с помощью к	онтекс	тно	го м	лен	ю.								
→UDP→ udp	"UDP" - блок переда	ни и приема данных	по пр	отон	кол	y U E	ΟP	(Us	er	Dat	agra	ım Pr	otocol).	
Параметры:	"Output datagram",	816384	Разм	<u></u>	отп	оав	пя	емо	Й,	дата	агра	ммы ілока	- В ⊢	ей б	будут
	bytes		разм	ер еще	ны	дан	нь	ie c	OE	вход	овб		-		
	bytes "Destination IP"	XXX XXX XXX XXX	размо IP датаг	ер (еще адр рам	ны ес ма	дан х	інь юс	іе с та,	O E	вход кот	ов б ороі	му	отпр	авля	ется
	bytes "Destination IP" "Destination port"	XXX.XXX.XXX.XXX 165535	размо ІР датаг Номе датаг	ер адр рам рам рам	ны ес ма юр	дан у та		іе с та, ста,	O E	кот кот а н	ов б ороі (ото	му рый	отпр	авля авля	ется ется
	bytes "Destination IP" "Destination port" "Input datagram", bytes	XXX.XXX.XXX.XXX 165535 816384	размо ІР датаг Номе датаг Разм быть	еще адр рам рам ерг раз	ны ес ма юр ма при	дан , та ним цен		іе с та, ста, мої цан	о е н й д	кот кот а н ата е дл	ов б ороі (ото грам	му рый 1мы - ыход	отпр отпр в ней ов бло	авля авля дол	ется ется жны
	bytes "Destination IP" "Destination port" "Input datagram", bytes "Receive IP"	XXX.XXX.XXX.XXX 165535 816384 XXX.XXX.XXX.XXX	разми ІР датаг Номе датаг Разм быть ІР ад скане	ер еще адр рам рам ерг раз рес эра.	ес ма пор ма при ме ск	дан у та цен ане	ос хоо ае ы ра	іе с та, ста, мої цан	о е н ны	кот кот а н ата е дл	ов б орог кото грам ля в я в	му рый 1мы - ыход общ	отпр отпр в ней ов бло их пар	авля авля дол жа.	ется ется жны трах
	bytes "Destination IP" "Destination port" "Input datagram", bytes "Receive IP" "Receive port"	XXX.XXX.XXX.XXX 165535 816384 XXX.XXX.XXX 165535	разми ІР датаг Номе датаг Разм быть ІР ад скане Номе входя	ер (еще адр рам ер г рам ер г раз рес ера.	ны ес ма пор ме ск	дан у та ним щен ане ота тагр	кос хос нае ы р ра	не с та, ста, мой дан , за кане (им.	ое н ны ида ера	а н ата едл етс: а,	ов б орог кото грам ля в я в	му рый 1мы - ыход общ	отпр отпр в ней ов бло их пар иваем	авля авля дол ока. оаме ый	ется ется жны трах для

			Send Receive
			Attribute name Size Offset
			In_find_line_0, seg 16 0
			0 1 2 3 4 5 6 7
			8 9 A B C D E F
			10 11 12 13 14 15 16 17
			18 19 1A 1B 1C 1D 1E 1F
	"Port map"	Receive	Распределение выходов блока в принимаемой датаграмме, значения выходов должны быть расположены в соответствии с данным параметром.
			Send Receive
			Attribute name Size Offset
			sb_udp_0, out 1 0
			sb_udp_0, out 4 1
			sb_udp_0, out 4 5
			0 1 2 3 4 5 6 7
			8 9 A B C D E F
			10 11 12 13 14 15 16 17
			18 19 1A 1B 1C 1D 1E 1F
Ryonu:			
Вихоли:	Создаются пользова		
сыходы.	Создаются пользова	телем с помощью к	лекстного меню.
		A C+	DD INPUTS
		Воо	ean
		Floa	t i i i i i i i i i i i i i i i i i i i
		Inte	jer in the second s
		Dou	ble
		Inte	jer64
		Poir	t
		Rect	angle
		Line	segment
		Line	
		Circ	e
		Area	
		(+ A	DD OUTPUTS
		Воо	ean
		Floa	
<u>(</u> <u>л</u>	"phys out" - вывод ре выходы могут прини применяется следу	езультатов на физи імать только два і ощее правило пре	неские выходы устройства. Поскольку физические взаимоисключающих состояния ("TRUE", "FALSE") собразования: если значение входного скаляра
phys out		од выдается INUE	, WITH TO DELACTOR TALOL .
Входы:	"phys_out_1"	SDT_SCALAR	Значение, передаваемое на физический выход №1.
	"phys_out_2"	SDT_SCALAR	Значение, передаваемое на физический выход №2.

modbus_tcp	"ModbusTCP" - блок п Адреса объектов ("Со допускают пересече контекстного меню. Г inputs", а выходы - в объекте "Input registo которых отличен от преобразование раз байта, однако ответн Пользователю предо байта по спецификац байта:	передачи и приема polls", "Discrete input ение. Входы и вы При этом входы типа объекте "Coils". В ers", выходы - в обп Boolean (объекты вмеров данных. На ая сторона может р роставлена возможн ции Modbus) необхо	данных по промышленному протоколу Modbus TCP. s", "Input registers", "Holding registers") независимы и ходы блока создаются динамически с помощью а Boolean всегда располагаются в объекте "Discrete Входы других доступных типов будут расположены в ьекте "Holding registers". Для входов и выходов, тип и "Input registers" и "Holding registers"), возможно пример, вход в блок имеет тип Float и занимает 4 работать только с типом Float16 размером 2 байта. юсть указать, что в выходной регистр (размером 2 одимо записать данные с приведением к размеру 2 name size offset
		scalar_to_fi scalar_to_in 0 1 8 9	oat_0, out 2 reg 0 t_0, out 1 reg 4 2 3 2 reg 6 A B 4 reg E
	Допускается размеш	ение только одного	э экземпляра данного блока на графе.
Параметры:			
Coils:	"Address"	065535	Начальный адрес объекта.
	"Count"	01968	Количество элементов.
	"Assembly map"	Output	Распределение выходов блока по выходной сборке, значения выходов должны быть расположены в соответствии с данным параметром.
		Attribute sb_modbus sb_modbus 0 1	name size offset s_tcp_0, 1 0 s_tcp_0, 1 1 2 3
Discrete inputs:	"Address"	065535	Начальный адрес объекта.
	"Count"	02000	Количество элементов.
	"Assemblymap"	Input	Распределение входов блока по входной сборке, значения входов будут расположены в соответствии с данным параметром.
		Attribute scalar_to_t	name size offset xool_0, out 1 0 2 3 4 5 6 7
Input registers:	"Address"	065535	Начальный адрес объекта.
	"Count"	0125	Количество элементов.
	"Assembly map"	Input	Распределение входов блока по входной сборке, значения входов будут расположены в соответствии с данным параметром.
		Attribute r scalar_to_fi scalar_to_in 0 1 8 9	name size offset loat_0, out 2 reg v 0 t_0, out 2 reg v 4 2 3 4 5 6 A B C D E
Holding	"Address"	065535	Начальный адрес объекта.
registers:	"Count"	0123	Количество элементов.
	"Assembly map"	Output	Распределение выходов блока по выходной сборке, значения входов должны быть расположены в соответствии с данным параметром.

		Attribute scalar_to scalar_to	e name _float_0, out _int_0, out	size 2 reg 2 reg	~ ~	offset 0 4	
		0 1	2 3	4	5	6 . E .	7
Входы:	Создаются пользователе	мспомошью	о контек	стно		ленк	0.
Входы:	Создаются пользователе	м с помощьк в F II С I I F I I I I I I I I I I I I I	D KOHTEK D ADD INPR Boolean Float Integer Double ADD OUT Boolean Float Integer Double	(CTHO UTS PUTS		иенк	0.
		Ir	nteger64				
Du tro du tr			Delete				
THND1 robot protocol HND1	"robot protocol HND1" - бл протокола представлено	пок обмена , в Приложени	данным 1и 5.	ис	роб	ботам	ии по протоколу HND1. Описание
Параметры:	"Destination IP"	XXX.XXX.XX	X.XXX	IР-а кот	адре орь	еср им ос	обота (или другого устройства) с существляется обмен данными.
	"Destination port"	16553	35 Номер устройс данным) сет ства) ми.	гевого порта робота (или другого) с которым осуществляется обмен
	"Listen port"	16553	35	Ном про пак	иер ослу сто) /ШИВа)В.	сетевого порта сканера, аемого для приема входящих
	"Swap X<->Y"	true/fals	se	Пер точ	рес ⁻ ек.	тано	вка местами координат X и Y
	"Flip X-axis"	on/off	f	Отр оси пар	Отражени оси Х. парамето		е (относительно 0) координат по ыполняется после применения а "Swap X<->Y".
	"Flip Y-axis"	on/off	f	Отр оси пар	аж Ү	ениє ′. Ві етра	е (относительно 0) координат по ыполняется после применения в "Swap X<->Y".
	"Offset along X-axis, mm"	-10001	000	См	еще ле	ение прим	координат по оси Х. Выполняется менения параметра "Flip Y-axis".
	"Offset along Y-axis, mm"	-10001	000	См	еще ле	ение прим	координат по оси Ү. Выполняется менения параметра "Flip Y-axis".
Входы:	"det"	SDT_BC	OL	Бул (кој	евь рре	ый ктно	флаг обнаружения шаблона ости всех выдаваемых точек).
	"point #1"	SDT_PO	NT	Точ	іка аке	№1, тес г	координаты которой передаются результатами измерений.
	"point #2"	SDT_PO	NT	Точ в па	ка аке	Nº2, ⊺e c p	координаты которой передаются результатами измерений.

	"point #3"	SDT_POINT	Точка №3, координаты которой передак в пакете с результатами измерений.			
Выходы:	"idx"	SDT_INT	Индекс сварочного шаблона, который необходимо использовать.			

25. Обслуживание при эксплуатации

Лазерные сканеры практически не требуют обслуживания. Как и другие оптические системы, лазерные сканеры чувствительны к пыли и брызгам на стеклах. Очистку необходимо производить с помощью мягкой ткани. Не используйте агрессивные чистящие средства, способные привести к царапинам.

Следите за тем, чтобы на поверхности стекол не было отпечатков пальцев – они существенно ухудшают качество получаемого профиля при сканировании.

Для удаления жира и отпечатков пальцев очистите стекла тканью с 20 % раствором спирта, затем протрите мягкой бумажной салфеткой.

26. Возможные неисправности и способы их устранения

Проблема	Возможная причина	Решение
Лазер не светит	Не подано питание на сканер, либо напряжение питания < 9 В.	Проверить источник питания.
	Не подключен кабель питания или кабель Ethernet.	Проверить подключение кабелей.
	Сканер неисправен.	Обратиться в техническую поддержку.
Сканер не обнаружен в сети	Не подано питание на сканер, либо напряжение питания < 9 В.	Проверить источник питания.
	Не подключены кабель питания и/или кабель Ethernet.	Проверить подключение кабелей.
	Неверная настройка сетевой карты приемника.	Настроить сетевую карту (см. п. <u>12.1.</u>).
	Сканер завис.	Перезагрузить сканер.
	Сканер неисправен.	Обратиться в техническую поддержку.
Отсутствие профиля	Низкий уровень экспозиции.	Проверить время экспозиции.
	Объект находится вне рабочего диапазона сканера.	Разместить объект в пределах рабочего диапазона сканера.
	Включен режим ROI и объект не попадает в анализируемую область.	Проверить настройки режима ROI.
Получение	Загрязнение окон сканера.	Провести очистку стекол (см. п. <u>25.</u>).
некорректного профиля	Некорректные настройки сканера.	Подключиться к сканеруи проверить настройки.
	Измерения проводятся вблизи мощных источников света.	Не проводить измерения вблизи мощных источников света.
В сканере сбилось зеркалирование профиля и появились искажения в измерениях	Может возникать при переходе с прошивок младше 20190717 на прошивки с 20190717 по 20191112 (при условии, что при калибровке использовался Image Elip)	Обновить прошивку до версии новее 20191113. Для восстановления ориентации профиля и измерений обратиться в техническую подлержку

27. Приложение 1. Режим Recovery

Режим **Recovery** предназначен для восстановления работоспособности сканера при аппаратных сбоях или после некорректных действий пользователя.

Для активации данного режима необходимо включить сканер с зажатой кнопкой **Reset** и продолжить удерживать кнопку, как минимум, в течение 10 секунд.

В данном режиме светодиодный индикатор **PWR** отображает сигнал **SOS** (три коротких-три длинных-три коротких), по которому можно распознать, что сканер был загружен в режиме **Recovery**.

После выключения сканера при следующем запуске будет запущен основной режим работы.

В режиме **Recovery** при вводе IP-адреса сканера в адресной строке браузера загружается упрощённая WEB-страница, посредством которой можно выполнить следующие действия:

- просмотреть общие параметры сканера;

- выполнить обновление встроенного ПО сканера;
- просмотреть и при необходимости изменить сетевые настройки;
- просмотреть лог-файл.

Внешний вид WEB-страницы в режиме **Recovery** представлен ниже:

YI	Recovery panel I	ecovery panel RF627 Industrial 2D Laser scanner					00:00 No notification		Ш С	C
Ŀ	Recovery	Firmware table	Calibration table							
-	Firmware and calibration table	Element type	Version	CRC	Serial		•			
;	Information	Choose file	Lipload Start		Save date		•			
	Summary table	Choose life	Opload Start		Save time		•			
	Network				CRC		•			
	Network settings				Choose	file		Upload		Start
Ê	Logs Manage scanner logs									_

Элементы управления в верхней области соответствуют основной веб-странице. Разделы режима **Recovery** соответствуют режимам основного WEB-интерфейса.

Recovery	Основной интерфейс	Раздел
Recovery	Раздел Update вкладки System	<u>23.2.</u> Раздел Update .
Information	Раздел Information вкладки System	<u>23.1.</u> Раздел Information.
Network	Вкладка Network	17. Вкладка Network. Настройка сетевых параметров.
Logs	Раздел Logs вкладки System	<u>23.4.</u> Раздел Logs .

28. Приложение 2. Редактирование битых пикселей

В процессе эксплуатации сканера в CMOS-сенсоре могут появляться битые пиксели, которые существенно искажают выделяемый из изображения профиль. Ниже описан режим пометки битых пикселей CMOS-сенсора. После пометки при формировании изображения значение сигнала битого пикселя автоматически рассчитывается как результат интерполяции сигнала соседних пикселей.

Кнопка включения режима редактирования битых пикселей CMOS-сенсора (**EDIT PIXELS**) расположена в WEB-интерфейсе сканера в области дополнительных параметров отображения рядом с кнопкой остановки/запуска видеопотока.

При включении данного режима отображается окно со списком битых пикселей.

Defective pixels list								
х	z	Actions						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
0	0	+ 1						
Show All								

Для добавления пикселя в список необходимо нажать 🖶 в незанятой строке таблицы (координаты Х и Z равны нулю), а затем кликнуть левой кнопкой мыши на нужном пикселе изображения. Курсор автоматически выделяет текущий пиксель с указанием его координат. Чтобы выйти из режима добавления нажмите кнопку Саncel

Для очистки строки таблицы (отмены интерполяции битого пикселя) нажать кнопку в нужной строке. При нажатии кнопки Show All будут выделены все добавленные в таблицу битые пиксели.

29. Приложение 3. Габаритные и установочные размеры сканеров с опциями

29.1. Пример сканера со сменными защитными окнами, опция EW

Сканеры со сменными защитными окнами:

РФ627, РФ627Smart [Версия документа 2.1.2] 20.09.2021

29.2. Пример сканера с воздушным охлаждением, опция AK-EW-AC

Сканер со сменными окнами, воздушной защитой окон и воздушным охлаждением:

29.3. Пример сканера с водяным охлаждением, опция AK-EW-AC

Сканер со сменными окнами, воздушной защитой окон и водяным охлаждением:

30. Приложение 4. Web API

Используя простой Web API, пользователь может получить информацию об устройстве, прочитать или записать значение параметра. Кроме того, через Web API устройство может выполнять некоторые команды. Полный список поддерживаемых команд приведен в описании команд. Структура возвращаемых ответов представлена в разделе описания команд. В примерах Web API используется заводской IP-адрес устройства и команды представлены так, как они должны быть набраны в адресной строке браузера. Если IP-адрес устройства был изменен, то следует использовать текущий IP-адрес устройства.

30.1. Общая информация об устройстве

/hello - получение общей информации об устройстве в формате JSON. о GET:

192.168.1.30/hello

/api/v1/config/commands - получение списка команд, поддерживаемых устройством. Формализованное описание будет содержать имя команды, возможность доступа к веб-API, идентификатор команды и режим доступа.

o GET:

192.168.1.30/api/v1/config/commands

/api/v1/config/returnCodes - получение текстового описания кодов результатов работы и ошибок, возвращаемых устройством.

o GET:

192.168.1.30/api/v1/config/returnCodes

30.2. Чтение и запись параметров устройства

/api/v1/config/params - получение общей информации обо всех параметрах устройства в формате JSON. Формализованное описание параметра будет содержать его имя, тип, режим доступа, индекс в массиве параметров, смещение для двоичных данных, размер данных параметра, текущее значение, значение по умолчанию, минимальное и максимальное значения, шаг значения параметра, для массивов - максимальное количество элементов.

o GET:

192.168.1.30/api/v1/config/params

/api/v1/config/params/values - считывание и запись значений параметров устройства. Для чтения можно запросить конкретные параметры по имени или индексу. Для записи параметра необходимо сформировать запрос "PUT" с параметрами "parameter_name:value".

o GET:

- 192.168.1.30/api/v1/config/params/values
- 192.168.1.30/api/v1/config/params/values?
- name=fact_general_hardwareVer&index=120
- o PUT:
 - 192.168.1.30/api/v1/config/params/values?

user_sensor_framerate=100&user_sensor_exposure1=100000

30.3. Сохранение, восстановление параметров и перезагрузка

/api/v1/config/params/save - сохранение текущих значений параметров устройства в энергонезависимой памяти в области пользователя. Сохраненные значения будут использованы при следующем включении устройства.

o GET:

192.168.1.30/api/v1/config/params/save

/api/v1/config/params/restore/save - сохранение текущих значений параметров устройства в области восстановления. Эти параметры будут применяться при повреждении параметров из области пользователя.

o GET:

192.168.1.30/api/v1/config/params/restore/save

/api/v1/config/params/restore/load - загрузка значений параметров устройства из области восстановления. Загруженные значения будут записаны в пользовательскую область, устройство будет автоматически перезагружено.

o GET:

192.168.1.30/api/v1/config/params/restore/load

/api/v1/reboot - перезагрузить устройство. Параметры будут загружены из области пользователя (если они не повреждены).

 \circ GET:

192.168.1.30/api/v1/reboot

30.4. Получение информации из лог-файла устройства

/api/v1/log - получение лог-файла работы устройства с полным описанием записей. о GET:

192.168.1.30/api/v1/log

/api/v1/log/content - получение лог-файла работы устройства в сокращенном, удобном для чтения виде.

o GET:

192.168.1.30/api/v1/log/content

30.5. Авторизация

/api/v1/authorization - авторизация на устройстве в качестве производителя. Позволяет редактировать заводские параметры устройства. Используя запрос "GET" необходимо получить токен, для которого сгенерировать ключ. Ключ необходимо отправить на устройство в запросе "PUT".

o GET:

- 192.168.1.30/api/v1/authorization
- o PUT:
 - 192.168.1.30/api/v1/authorization?

key=230d84e16c0dae529098f1f1bb4debb3a6db3c870c4699245e651c06b714deb3 5a4d0a43a99f5ea0cc771a0e189c190a

30.6. Запрос профилей

/api/v1/profile/capture - запрос выполнения измерений (получения профиля). Доступно только в режимах "Software, external" и "Software, internal".

o GET:

192.168.1.30/api/v1/profile/capture - запрос одного измерения;

192.168.1.30/api/v1/profile/capture?count=100 - запрос 100 измерений.

30.7. Smart

/api/v1/smart/description - получение описания групп блоков, типов данных модуля "Smart" и массива блоков, реализованных в данной прошивке.

o GET: 192.168.1.30/api/v1/smart/description

/api/v1/smart/graph/results - получение результатов работы блоков графа и профиля, по которому выполнялся расчет.

o GET: 192.168.1.30/api/v1/smart/graph/results

/api/v1/smart/block/read - получение списка блоков графа с их параметрами.

o GET: 192.168.1.30/api/v1/smart/block/read

31. Приложение 5. Протокол HND1, версия 1.0.

31.1. Интерфейс Ethernet - канальный уровень

Используемый протокол транспортного уровня - UDP.

Сканер, как правило, подключается к контроллеру робота или исполнительной системы и работает как подчиненное устройство. Двусторонний обмен данными осуществляется посылкой сканеру команды ведущим устройством и посылкой сканером ответа. Предусмотрены команды, разрешающие односторонний обмен, а именно посылку сканером результатов измерений до тех пор, пока не будет отдана команда остановиться.

Каждая команда и ответ состоят из заголовка (типа сообщения (команды) и длины последующих данных), за которым следуют непосредственно данные, специфичные для данной команды. Эта последовательность допускает передачу команд и ответов переменной длины. Для повышения эффективности в будущем может быть предусмотрена отправка и получение нескольких команд или ответов в одном пакете UDP. Получатель будет распаковывать и обрабатывать каждую команду в пакете в том порядке, в котором они размещены в пакете.

Слова (16 или 32-разрядные значения) отправляются в формате "little endian".

31.2. Описание команд HND1

31.2.1. Получение версии протокола

Эта команда запрашивает поддерживаемую сканером версию протокола. Сканер ответит версией протокола (два целых числа, major и minor коды версии). Версия протокола, описанная в данном документе, указана в названии раздела.

Имя команды: MSG_GET_SENSOR_VERSION

Команда к сканеру:

Τı	1П	Длі	ина
1	1 0		0

Параметры:

- нет.

Ответ сканера:

Τı	1П	Длі	ина	ma	major		minor	
1	0	0	0	1	0	0	0	

Параметры:

- major: код версии major;

- minor: код версии minor.

31.2.2. Установка интенсивности излучения лазера

Эта команда устанавливает текущую интенсивность лазера. Допустимо изменение интенсивности до 4-х лазеров. Каждое 16-битное поле определяет интенсивность в % (0 - минимальная яркость, 100 - максимально возможная яркость). Измененное данной командой значение не сохраняется в энергонезависимой памяти сканера.

Имя команды: MSG_SET_LASERS_INTENSITY

Команда к сканеру:

Τı	1П	Длі	ина	inte	ns0	inte	ns1	inte	ns2	inte	ns3
5	0	8	0	0	0	0	0	0	0	0	0

Параметры:

- intens0: интенсивность первого (основного) лазера;

- intens1: интенсивность второго (дополнительного) лазера;
- intens2: интенсивность третьего (дополнительного) лазера;
- intens3: интенсивность четвертого (дополнительного) лазера.

Ответ сканера:

Τı	1П	Длі	ина
5	0	0	0

Параметры:

- нет.

31.2.3. Установка времени экспонирования кадра сенсором

Эта команда устанавливает время экспонирования CMOS-сенсором кадра. Значение должно передаваться в миллисекундах. Допустимо задание времени экспонирования до 3 кадров (в режиме работы сканера с несколькими экспозициями).

Имя команды: MSG_SET_SENSOR_EXPOSURE

Команда к сканеру:

Τı	1П	Длі	ина	еҳ	o0	еҳ	o1	еҳ	o2
6	0	6	0	0	0	0	0	0	0

Параметры:

- ехр0: время экспонирования первого кадра;
- ехр1: время экспонирования второго кадра (в режиме работы с несколькими экспозициями);
- ехр2: время экспонирования третьего кадра (в режиме работы с несколькими экспозициями).

Ответ сканера:

Τı	1П	Длі	ина
6 0		0	0

Параметры:

- нет.

31.2.4. Включение лазера

Включение лазера. Если лазер уже включен, ничего не изменится. Будет применена яркость, заданная в параметрах сканера (командой MSG_SET_LASERS_INTENSITY или другим способом). Обратите внимание, что принудительное отключение излучения лазера в целях безопасности (специальный сигнал на разъеме сканера) имеет приоритет над всеми остальными элементами управления.

Имя команды: MSG_SET_LASER_ON

Команда к сканеру:

Τı	1П	Длі	ина
7	7 0		0

Параметры:

- нет.

Ответ сканера:

Τı	1П	Длі	ина
7	7 0		0

Параметры: - нет.

31.2.5. Выключение лазера

Выключение лазера. Если лазер уже выключен, ничего не изменится. Имя команды: **MSG_SET_LASER_OFF**

Команда к сканеру:

Τı	1П	Длина			
8	0	0	0		

Параметры:

- нет.

Ответ сканера:

Τı	1П	Длі	ина
8	0	0	0

Параметры:

- нет.

31.2.6. Установка области интереса (ROI)

Эта команда позволяет установить размер и положение рабочей области CMOSсенсора. Уменьшение размера области позволяет увеличить рабочую частоту сканера.

Пара "X1, Y1" задает верхнее левое положение ROI, а "X2, Y2" задает нижнее правое положение ROI.

Имя команды: MSG_SET_SENSOR_ROI

Команда к сканеру:

Τı	1П	Длі	ина	Х	1	Y	1	Х	2	Y	2	N	U	N	U
12	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0

Параметры:

- X1: координата X верхней левой точки ROI в настоящее время не используется, будет проигнорировано;
- Y1: координата Y верхней левой точки ROI;
- X2: координата X нижней правой точки ROI в настоящее время не используется, будет проигнорировано;
- Y2: координата Y нижней правой точки ROI;
- NU: не используется.

Ответ сканера:

Τı	1П	Длі	ина
12	0	0	0

Параметры:

- нет.

31.2.7. Получение статуса устройства

Эта команда позволяет получить информацию о состоянии устройства. Имя команды: MSG_GET_SENSOR_STATUS Команда к сканеру:

Τν	1П	Длі	ина
8	0	0	0

Параметры:

- нет.

Ответ сканера:

Ті	и п	Дл	ина	m	ode	р	ad1[0]]		-		pad'	1[15]	tem	np1	ten	np2	
15	0	2	50	0	0	0	C)				0	0	0	0	0	0)
		1																_
terr	пр3	he	ater	ра	d2[0]				pad2	2[15]]	ga	in	e	кр	N	U	
0	0	0	0	0	0				0	0		0	0	0	0	0	0)
																		_
X	1	Y	1	X	2	Y	2	ра	d3[0]				pad3	[15]		las	int	0
0	0	0	0	0	0	0	0	0	0				0	0	0	0	0	
int1	int2	int3	NU	NU	NU	NU		pad4	[0]				pad4	[15]	se	am	N	U
0	0	0	0	0	0	0		0	C)			0	0	0	0	0	0

NU[40]	pad	5[0]	 pade	5[63]	Ν	U	pad	6[0]	 pad6	[127]
0	0	0	 0	0	0	0	0	0	 0	0

Параметры:

- mode: режим работы сканера, в текущей версии всегда 0 режим выдачи измерений;
- pad1: разделитель-резерв;
- temp1: температура CPU, значение рассчитывается как 100*(температура в °C) + 10000;
- temp2: внутренняя температура сканера (сенсор №1), значение рассчитывается как 100*(температура в °C) + 10000;
- temp3: внутренняя температура сканера (сенсор №2), значение рассчитывается как 100*(температура в °C) + 10000;
- heater: состояние подогрева, в текущей версии 0;
- pad2: разделитель-резерв;
- gain: усиление сигнала CMOS-сенсора, в текущей версии всегда 0;
- ехр: время экспонирования (для первого кадра) в мс;
- NU: не используется;
- X1: координата X верхней левой точки ROI- в настоящее время не используется, будет проигнорировано;
- Y1: координата Y верхней левой точки ROI;
- X2: координата X нижней правой точки ROI в настоящее время не используется, будет проигнорировано;
- Y2: координата Y нижней правой точки ROI;
- pad3: разделитель-резерв;
- las: состояние лазера (0 выключен, 1 включен), на данный параметр не влияет аппаратное отключение лазера;
- int0: интенсивность излучения лазера №1 (основного);
- int1: интенсивность излучения лазера №2 (дополнительного);
- int2: интенсивность излучения лазера №3 (дополнительного);
- int3: интенсивность излучения лазера №4 (дополнительного);
- pad4: разделитель-резерв;
- seam: индекс используемого шаблона;
- pad5: paзделитель-резерв;
- pad6: разделитель-резерв.

31.2.8. Установка типа шаблона для поиска шва

Эта команда устанавливает индекс используемого шаблона для поиска сварного соединения и выдачи его атрибутов.

Имя команды: MSG_SET_BASIC_SEAM_TYPE

Команда к сканеру:

Τı	1П	Длина		idx			
40	0	2	0	0	0		

Параметры:

- idx: индекс шаблона.

Ответ сканера:

Τı	1П	Длі	ина
40 0		0	0

105

Параметры:

- нет.

31.2.9. Получение версии прошивки сканера

Эта команда запрашивает версию внутреннего программного обеспечения сканера (версию прошивки). Сканер ответит версией прошивки (три целых числа, major, minor и patch коды версии).

Имя команды: MSG_GET_FIRMWARE_VERSION

Команда к сканеру:

Τι	1П	Длі	ина
100	0	0	0

Параметры:

- нет.

Ответ сканера:

Тι	1П	Длі	ина	major		minor		patch	
100	0	6	0	2	0	3	0	3	0

Параметры:

- major: код версии major;

- minor: код версии minor;
- patch: код версии patch.

31.2.10. Получение температуры сканера

Эта команда запрашивает внутреннюю температуру сканера. Используется датчик, установленный на CPU, как самом тепловыделяющем элементе.

Имя команды: MSG_GET_MAIN_BD_TEMP

Команда к сканеру:

Tı	1П	Длина				
105	0	0	0			

Параметры:

- нет.

Ответ сканера:

Ти	1П	Длі	ина	temp		
105	0	2	0	0	0	

Параметры:

- temp: температура CPU, значение рассчитывается как 100*(температура в °C) + 10000.

31.2.11. Запустить поток результатов измерений

Эта команда разрешает отправку результатов измерения параметров сварного стыка, индекс которого задан командой MSG_SET_BASIC_SEAM_TYPE. Состав отправляемых результатов зависит от типа выбранного стыка. Всего обеспечивается возможность отправки до 16 точек и 16 значений параметров. Для каждой точки предусмотрен статус, показывающий, используется ли она для данного типа стыка и валидны ли данные по ней.

Имя команды: MSG_START_MEASUREMENT_SENDING_IN_MM Команда к сканеру:

Т	1 П	Длі	ина
150	0	0	0

Параметры:

- нет.

Ответ сканера:

Τı	1П	Длі	ина
150	0	0	0

Параметры:

- нет.

Сообщение от сканера (высылаются после каждого выполненного измерения):

Тип		Длина		timestamp			pt[0].x				pt[0].y				
150	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

pt[0].st					pt[15].x			pt[15].y			
0	0	0	0	 0	0	0	0	0	0	0	0

pt[15].st			prm[0].val			prm[0].st						
0	0	0	0	0	0	0	0	0	0	0	0	

prm[15].val			prm[15].st			pad[0]		 pad[63]			
0	0	0	0	0	0	0	0	0	0	 0	0

Параметры:

- timestamp: метка системного времени формирования результатов измерения, мс;

- pt[0].х: координата Х точки №1 (float, mm);
- pt[0].z: координата Z точки №1 (float, mm);
- pt[0].st: статус точки №1;

- pt[15].х: координата Х точки №16 (float, mm);

- pt[15].z: координата Z точки №16 (float, mm);

- pt[15].st: статус точки №16;

- prm[0].val: значение параметра №1 (зависит от шаблона), в текущей версии не используется;
- prm[0].st: статус параметра №1, в текущей версии не используется;

- prm[15].val: значение параметра №16 (зависит от шаблона), в текущей версии не используется;
- prm[15].st: статус параметра №16, в текущей версии не используется;
- pad: разделитель-резерв.

Статусы, для текущей версии протокола: 0 - данные по точке или параметру актуальны; 2 - данные по точке/параметру не актуальны и не должны использоваться.

31.2.12. Остановить поток результатов измерений

Эта команда запрещает отправку результатов измерения параметров сварного стыка.

Имя команды: MSG_STOP_MEASUREMENT_SENDING_IN_MM Команда к сканеру:

Tı	1П	Длина				
151	0	0	0			

Параметры: - нет.

Ответ сканера:

Τı	1П	Длина				
151	0	0	0			

Параметры:

- нет.

32. Приложение 6. Смарт-блок "template detector" и редактор шаблонов

32.1. Назначение и общая информация

Смарт-блок "template detector" предназначен для обнаружения в профиле шаблона, заданного пользователем. Шаблон формируется пользователем с помощью специального редактора, описанного ниже. В качестве основы для создания шаблона может выступать текущая аппроксимация профиля или нарисованная пользователем последовательность отрезков.

32.2. Структура шаблона и принцип поиска шаблона в профиле

Шаблон представляет собой набор элементов (Element) идентичных элементам, полученным после аппроксимации профиля. Каждый элемент включает в себя описание части профиля (Part) (используется только для графического отображения элемента в редакторе), а также набор собственных (Self constraint) и относительных (Relative constraint) ограничений. Кроме того, шаблон содержит описание вариантов (Variant), определяющих допустимое отсутствие элементов. Обобщенная структура шаблона может быть представлена в следующем виде:

В текущей версии прошивки количество вариантов, элементов и ограничений не может превышать следующих значений:

Ν	8	Максимальное количество вариантов шаблона. В шаблоне всегда существует вариант №1 - он содержит все элементы.
К	16	Максимальное количество элементов в шаблоне.
М	8	Максимальное количество ограничений для каждого элемента, отдельно для собственных и отдельно для относительных.

Поиск шаблона в профиле основан на последовательной проверке собственных и относительных ограничений для элементов аппроксимации профиля. Поиск начинается для первого варианта, при этом, если хотя бы одно ограничение не выполнено, проверка останавливается и выполняется переход к следующему варианту. Если достигнут последний вариант шаблона и шаблон не обнаружен, то считается, что шаблон в профиле не найден. На выходе "det" блока будет установлено значение "FALSE", выходы блока будут иметь невалидные значения сегментов (или дуг - в будущем).

В случае, если все ограничения для каждого элемента шаблона выполнены, считается, что шаблон обнаружен. На выходе "det" блока будет установлено значение "TRUE" и на выходы блока поступят данные о сегментах (или дугах - в будущем).

32.3. Редактор пользовательских шаблонов

32.3.1. Описание элементов интерфейса

Для открытия редактора шаблонов, необходимо открыть параметры блока шаблонов и нажать кнопку **Edit**.

Откроется модальное окно встроенного в web-интерфейс визуального редактора шаблонов:

Окно редактора шаблонов делится на следующие функциональные области:

1 - Область, предназначенная для отображения шаблона и настройки его параметров.

2 - Область, предназначенная для общего управления редактором шаблонов.

3 - Область, предназначенная для визуализации шаблона и его ограничений, отрисовки профиля и отображения результатов детектирования шаблона по текущему профилю, а также для выбора редактируемых элементов.

32.3.1.1. Область отображения и настройки параметров шаблона

Templates								
• Var	iants ((1)	1					ADD
#	Act.	Del.	ł	2			3	4
1]			
2		×]			
3		×		C]			
Element #1 (RC: 1)								
▼ Se	elf con	strain	ts <mark>4</mark>					+
1		🖌 Le	ength	5	-	20		×
• Re	elative	const	raints					+
Pair	:2 1		ngle	-50	-	20		×
Pair	r:4 1	⊘ D	istance	20	-	40		×
▼ Elei	ment #	#2						
* Se	elf con	strain	ts					
1	. 6	V Le	ength	10	-	25		×
* Re	elative	const	raints					
Pair	r:31	A	ngle	80	-	25		×
▼ Elei	ment i	#3						
- Se	elf con	strain	s					
1	. (🖌 Li	ength	10	-	25		×
▼ Re	elative	const	raints					
Pair	:4 1	✓ A	ngle	-45	-	20		×
▼ Fle	▼ Element #4							
* Se	Celf constraints							
1		Le	ength	5	-	20		×
_			T	Angle			_	
			3	Value				
-10		-1	-50	T SIGE			+1	+10
-10		-1	20	Tolerance			+1	+10

110

Содержит три раздела:

1 - Управление вариантами шаблона. Позволяет добавлять, удалять и изменять варианты. При этом первый вариант должен существовать всегда и включать все элементы шаблона.

2 - Отображает список элементов текущего шаблона и заданных собственных и относительных ограничений. Нажатие на ограничение позволяет отобразить его в области визуализации шаблона, а также дает доступ к редактированию параметров.

3 - Содержит параметры выделенного ограничения.

32.3.1.2. Область управляющих элементов

В данной области располагаются элементы, выполняющие действия по созданию, редактированию и удалению элементов шаблона.

k 🔗 🛅 🛱 Generate 🛃

Описание кнопок:

Кнопка	Назначение
×	Режим выбора элементов шаблона. В данном режиме при клике на элемент шаблона происходит его выделение.
	Режим рисования элементов шаблона. В данном режиме при клике в координатной плоскости происходит добавление точки для рисования элементов шаблона.
*	Сброс нарисованных линий в режиме рисования элементов.
Done	Создание нарисованных линий в режиме рисования элементов.
Î	Удаление выбранного элемента шаблона.
🗘 Generate	Автоматическая генерация элементов шаблона из аппроксимированных сегментов профиля.
Lines	Вкл/выкл отображение аппроксимированных элементов профиля.
Clear	Очистка всего шаблона.
B	Скачивание шаблона в формате *.json.
1	Загрузка сохраненного шаблона в сканер.
×	Закрытие модального окна редактора шаблонов.

32.3.1.3. Область визуализации шаблона и его ограничений

Область предназначена для:

- отображения составляющих шаблон элементов (дает представление о форме шаблона);
- графического представления выбранного ограничения (выбор осуществляется в области настройки параметров шаблона);
- отображения точек профиля;
- отображения результатов аппроксимации профиля (при нажатии на кнопку Lines).

В случае успешного обнаружения шаблона в текущем профиле, зелеными отрезками будет показано положение шаблона.

32.3.2. Порядок работы с редактором шаблонов

Редактор шаблонов обеспечивает создание, просмотр, изменение и очистку пользовательского шаблона.

32.3.2.1. Создание элементов шаблона

Элементы шаблона могут создаваться пользователем самостоятельно, путем последовательной отрисовки отрезков, или автоматически из результатов аппроксимации текущего профиля.

32.3.2.1.1. Создание элементов шаблона пользователем

Данный режим включается нажатием кнопки с символом пера:

В этом режиме при клике на координатной сетке появляются точки, образующие ломаную линию:

ВАЖНО!

Форма ломаной линии без заданных относительных ограничений (углов между отрезками и расстояний между отрезками) не имеет значения при поиске шаблона и задает только количество элементов в шаблоне. Учет формы шаблона осуществляется за счет использования относительных ограничений.

Удаление нарисованных отрезков выполняется нажатием на кнопку с символом отмены:

4	
~~*	

Завершение создания элементов шаблона выполняется нажатием кнопки Done:

При этом нарисованные элементы будут переданы в сканер и начнется их поиск в профиле. Необходимо учесть, что если собственные и относительные ограничения для шаблона не заданы, будут найдены первые отрезки в профиле по количеству элементов в шаблоне.

32.3.2.1.2. Автоматическое создание элементов шаблона

Для автоматической генерации элементов шаблона необходимо нажать кнопку Generate:

При этом элементы шаблона будут созданы из результатов аппроксимации текущего профиля. Замечание о форме ломаной (образованной из элементов шаблона) из предыдущего подраздела должно учитываться и в данном случае.

32.3.2.2. Создание ограничений для учета формы шаблона

113

После создания элементов шаблона необходимо добавить ограничения, которые позволяют учесть форму шаблона, т.е. допустимое изменение самих элементов и соотношения между парами элементов.

Ограничения бывают двух видов: собственные (Self constraints) и относительные (Relative constraints).

32.3.2.2.1. Собственные ограничения

Собственные ограничения относятся непосредственно к самому элементу шаблона. Предусмотрены следующие собственные ограничения:

Length	Ограничение длины элемента (задает минимально и максимально допустимое значение). Параметры: • min - минимально допустимая длина; • max - максимально допустимая длина.
	min 14 00 2 max 20 00 1
Angle	Ограничение угла наклона относительно горизонтальной оси. Параметры: • value - целевой угол относительно горизонтальной оси. Положительные значения определяют направление против часовой стрелки; • tolerance - величина отклонения относительно целевого угла. Определяется в обе стороны от целевого угла.

32.3.2.2.2. Относительные ограничения

Относительные ограничения существуют только для пары элементов и задаются от основного элемента к относительному. Предусмотрены следующие относительные ограничения:

 Параметры:
 • value - целевой угол между основным и относительным элементами. Положительные значения определяют направление против часовой стрелки;

 • tolerance - величина отклонения относительно целевого угла. Определяется в обе стороны от целевого угла.

 Distance ortho
 Ограничивает расстояние между начальной точкой относительного элемента и основного элемента в перпендикулярном направлении (перпендикуляр задается основным элементом):

 Distance ortho
 Ограничивает расстояние между начальной точкой относительного элемента и основного элемента в перпендикулярном направлении (перпендикуляр задается основным элементом):

 Параметры:
 Параметры:

 • min - минимально допустимое расстояние в перпендикулярном направлении;

 • max - максимально допустимое расстояние в перпендикулярном направлении.

32.3.2.3. Добавление ограничений в шаблон

Для добавления ограничения необходимо выбрать основную и относительную линии. При клике на линию в первую очередь выбирается основная линия (выделяется фиолетовым цветом). Если основная линия уже выделена, то при следующем клике выбирается относительная линия (выделяется желтым цветом). При клике вне линий шаблона текущее выделение сбрасывается.

После того как элементы выбраны, в области настройки шаблона появляются кнопки добавления ограничений:

116

При нажатии на кнопку 📩 появляется выпадающий список с добавлением соответствующих ограничений:

▼ Element #1			
 Self constraints 	+	Length	
 Relative constraints 	+	Angle	
Добавление собственного ограни	чени	19	
★ Element #1			
 Self constraints 	+	Angle	
 Relative constraints 	+	Distance	
▼ Element #2		Distance ortho	
Добавление относительного огран	ичен		

После выбора необходимого ограничения оно отобразится в списке ограничений для данного элемента:

 Self constraints 			-
1 🗹 Length	0	- 0	×
 Relative constraints 			н
Pair: 2 1 🖌 Angle	0	- 0	×
Pair: 3 1 V Distance	0	- 0	×

Для относительных ограничений указан номер относительного элемента, для которого это ограничение задано.

Элемент "checkbox" в строке ограничения включает или отключает проверку данного ограничения при поиске шаблона.

Цифровые поля определяют параметры ограничения и зависят от типа ограничений.

Для удаления ограничения необходимо нажать кнопку 💥 для того ограничения, которое необходимо удалить.

При нажатии на ограничение в списке происходит его выделение. При этом на шаблоне отображается графическая визуализация выбранного ограничения, а в нижней области появляется область настройки параметров ограничения:

Настройка выделенного ограничения заключается в задании его параметров, набор которых определяется видом ограничения. Для быстрой установки нужных значений предусмотрены кнопки увеличения и уменьшения текущего значения на 1 и на 10 единиц:

		Length		
40		Min		
-10	-1 10	10	+1	+10
		Max		
-10	-1	30	+1	+10

32.3.2.4. Создание и настройка вариантов шаблона

Вариант шаблона определяет какие элементы в шаблоне могут отсутствовать. При отображении вариантов по вертикальной оси показан номер варианта, по горизонтальной - номер элемента:

 Va 	riants	(1)				ADD
#	Act.	Del.	1	2	3	4
1						
2		×	\checkmark			
3		×				

Элементы управления в колонке **Act.** ("checkbox") показывают, используется ли данный вариант при сопоставлении. Кнопка 🔀 удаляет соответствующий вариант.

При нажатии на номер варианта осуществляется выбор данного варианта для отображения. Неактивные элементы шаблона отображаются штриховой линией - это означает, что данный вариант шаблона допускает отсутствие элемента:

Templates						N		😂 Generate	< Lines	
• Va	riants ((2)				ADD				
#	Act.	Del.	1	2	3	4				
1							110.0 -		1	4
2		×								
3		×					100.0 -	4	2	3 •
Ele	ment #	¥1								••
* S	elf con	straints	1							
	L	Ler	ngth §	5 –	20	×	90.0 -			

Примеры различных вариантов одного шаблона:

32.3.3. Пример создания шаблона

Последовательность действий для создания шаблона, описывающего форму профиля, показанного на рисунке.

Действия, которые необходимо выполнить:

N⁰	Описание	Скриншот
5	В разделе "Relative constraints" элемента №1 добавить ограничение типа Angle.	▼ Element #1 ▼ Self constraints + 00.0 1 ✓ Length 5 - 20 X Angle ▼ Relative constraints + Distance ▼ Element #2 Distance ortho
6	Выбрать добавленное ограничение в списке "Relative constraints" и указать целевой угол и допуск. При определении целевого угла необходимо приблизительно совместить серую стрелку с относительным элементом. Также показано цифровое значение текущего угла между элементами. При указании допуска, отображаемый сектор должен включать относительный элемент.	Angle -10 -1 -50 +1 +10 -10 -1 20 +1 +10 1 +10
7	Сбросить предыдущее выделение, кликнув в пустой области (не содержащей элементов аппроксимации профиля). Выделить отрезок №1 и сразу же отрезок №4 - в этом случае он станет относительным элементом.	
8	В разделе "Relative constraints" элемента 1 добавить ограничение типа "Distance".	Element #1 Self constraints 1 ✓ Length 5 - 20
9	Выбрать добавленное ограничение в списке "Relative constraints" и задать минимальное и максимальное значение расстояния.	Distance -10 -1 20 +1 +10 -10 -1 40 +1 +10 1 min 20 00 4 max 40 00 3

N⁰	Описание	Скриншот
	Доб	авление ограничений элемента 2
1	Сбросить предыдущее выделение, кликнув в пустой области (не содержащей элементов аппроксимации профиля). Выделить отрезок №2, в этом случае он станет основным элементом.	
2	В разделе "Self constraints"	▼ Element #2
	элемента №2 добавить	Self constraints +
	ограничение типа Length.	Relative constraints Angle
3	Выбрать добавленное	Length
	ограничение в списке "Self	Min
	сопятания и задать минимальную и максимальную	-10 -1 10 +1 +10
	длину отрезка.	-10 -1 25 +1 +10
		7 10 do 3 7 10 x 3 7 0 0 0
4	Сбросить предыдущее выделение. Выделить отрезок №2 и сразу же за этим отрезок №3, он станет относительным элементом.	
5	В разделе "Relative constraints"	▼ Element #2
	элемента №2 добавить ограничение типа Apole	Self constraints + 750
		1 🖌 Length 10 - 25 💥 Angle
		Relative constraints Distance
		- Eleffiellt #3
6	Выбрать добавленное	Angle
	constraints" и задать целевой	-10 -1 Value +1 +10
	угол и допуск.	-10 -1 Tolerance +1 +10

N⁰	Описание	Скриншот
	Доб	авление ограничений элемента 3
1	Сбросить предыдущее выделение. Выделить отрезок №3, в этом случае он станет основным элементом.	
2	В разделе "Self constraints" элемента №3 добавить	Element #3 Length
	ограничение типа "Length".	Relative constraints Angle
3	Выбрать добавленное ограничение в списке "Self constraints" и задать минимальную и максимальную длину отрезка.	Length -10 -1 10 Min +1 +10 -10 -1 25 +1 +10 1 2 no 00 3 no 0 3 no 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	Сбросить предыдущее выделение. Выделить отрезок №3 и сразу же за этим отрезок №4, он станет относительным элементом.	

В результате полученный шаблон будет детектироваться с учетом существующих вариантов:

33. Приложение 7. Смарт-блок "C-script"

33.1. Назначение и общая информация

Смарт-блок "C-script" предназначен для редактирования и исполнения пользовательских скриптов на Си-подобном языке "rfc". Перед исполнением скрипт валидируется - в случае наличия ошибок, информация о них будет выведена в консоль редактора скриптов. Взаимодействие с другими смарт-блоками осуществляется с помощью входных и выходных динамически создаваемых портов. Порты адресуются по названию, которое можно задать через контекстное меню порта или в редакторе.

Существующие ограничения:

- препроцессор реализован с ограничениями, директивы "#define", "#if", "#ifdef", "#else", "#endif" необходимо использовать с осторожностью;
- объявление функций поддерживается только по стандарту ANSI;
- указатели на функции не поддерживаются;
- игнорируются объявления: static, extern, volatile, register и auto;
- структуры и объединения должны объявляться глобально, битовые поля не поддерживаются.

Для создания и редактирования текстов скриптов предоставляется специальный редактор:

C-script editor		×
Outputs	Dark Light 🗸 Script is valid. Send	ON
0 🖸 Name: out_point	1 #define ROI_SIZE 30	Participante de la constante de
1 fit Name: roi_size	2 point_t* pt; 3	
2 fit Name: roi_pos	<pre>4 output_float("roi_size", ROI_SIZE); 5</pre>	
Inputs	6 while(1) 7 {	
0 🖸 Name: in_point	<pre>8 inputs_sync(); 9 pt = input point("in point");</pre>	
1 fit Name: in_fit	10 11 output_float("roi_pos", pt->z + ROI_SIZE/2);	
▼ Types	12 outputs_sync();	
TF bool_t	14	
u8 uint8_t		
i8 int8_t		
u16 uint16_t		
116 int16_t		
u32 uint32_t		
132 int32		
N scalar		
▶ D point_t		
rect_t		
segment_t		
Iine_t		
Iinekb_t	Execute script	
or circle_t		
point_t	C	
 Methods 		
Inputs_sync		
▶ outputs syn		

Окно редактора разделено на следующие области:

- Списки входов и выходов смарт-блока, отображающие тип данных входа или выхода и его название. Название пользователь может изменять, учитывая, что допустимо использование только символов ASCII и длина названия не должна превышать 60 символов.
- 2. Список поддерживаемых скриптом типов данных.

- Список предоставляемых специальных методов для быстрого поиска и вставки. По нажатию на метод, его прототип будет вставлен в редактор скриптов.
- 4. Область управления темой редактора, валидацией и запуском скрипта на исполнение.
- 5. Область редактирования скрипта.
- 6. Консоль вывода ошибок и сообщений.

33.2. Поддерживаемые типы данных

Набор доступных пользователю типов данных включает базовые типы, расширенные типы и специальные типы данных.

Базовые типы являются стандартными типами языка Си:

Тип	Размер, байт	Мин	Макс
char	1	-128	127
unsigned char	1	0	255
short int	2	-32768	32767
short unsigned int	2	0	65535
int	4	-2147483648	2147483647
unsigned int	4	0	4294967295
long int	8	-(2^63 - 1)	2^63 - 1
long unsigned int	8	0	2^64 - 1
float	4	±1.5 * 10^(-45)	±3.4 * 10^38

Расширенные типы данных: bool_t, uint8_t, int8_t, uint16_t, int16_t, uint32_t, int32_t. Специальные типы введены для работы с входными и выходными портами блока, согласованы с типами данных, используемыми внутри графа вычислений:

Тип	Размер, байт	Описание
scalar_t	4	Скалярная величина. В текущей версии представлена типом данных "float".
point_t	8	Координаты точки: { float x; float z; }
rect_t	16	Параметры прямоугольника: { point_t topLeft; float w; float h; }
segment_t	16	Отрезок прямой: {
line_t	12	Бесконечная линия, заданная коэффициентами abc: { float a; float b; float c; }
circle_t	12	Окружность, заданная координатами центра и радиусом: { point_t center; float r; }
arc_t	25 (28 с выравниванием)	Дуга, заданная начальной и конечной точками, координатами центра и радиусом описывающей

Тип	Размер, байт	Описание
		окружности и флагом выпуклая/вогнутая: { point_t p1; point_t p2; point_t center; float r; bool_t convex; }

33.3. Поддерживаемые методы

33.3.1. Базовые методы

ctype.h			
int isalnum(int)	int isalpha(int)	int isblank(int)	
int is cntrl(int)	int isdigit(int)	int isgraph(int)	
int islower(int)	int isprint(int)	int ispunct(int)	
int isspace(int)	int isupper(int)	int is x digit(int)	
int tolower(int)	int toupper(int)	int isascii(int)	
int toascii(int)			
	math.h		
float acos(float)	float asin(float)	float atan(float)	
float atan2(float, float)	float ceil(float)	float cos(float)	
float cosh(float)	float exp(float)	float fabs(float)	
float floor(float)	float fmod(float, float)	float frexp(float, int *)	
float Idexp(float, int)	float log(float)	float log10(float)	
float modf(float, float *)	float pow(float, float)	float round(float)	
float sin(float)	float sinh(float)	float sqrt(float)	
float tan(float)	float tanh(float)		

33.3.2. Специальные методы

Специальные методы не требуют подключения дополнительных модулей.

void inputs_sync()

 Синхронизация данных на всех входах смарт-блока. Поток исполнения скрипта будет приостановлен в ожидании появления на всех входах блока информации от предыдущих блоков графа. Неподключенные входы игнорируются.

void outputs_sync()

 Синхронизация данных на всех выходах смарт-блока. Поток просчета графа будет приостановлен до исполнения этой команды, что обеспечивает запуск просчета последующих блоков только после появления на всех выходах блока информации.

void sleep_us(unsigned int val)

- Приостановка исполнения скрипта на заданное количество микросекунд. Минимальное значение 100 мкс, шаг 100 мкс. Рекомендуется использовать в циклах для предоставления процессорного времени внутренним потокам сканера.

bool_t	input_bool(char* portName)
float	input_float(char* portName)
scalar_t	input_scalar(char* portName)
point_t*	input_point(char* portName)
rect_t*	input_rect(char* portName)
segment_t*	input_segment(char* portName)
line_t*	input_line(char* portName)
circle_t*	input_circle(char* portName)
arc_t*	input_arc(char* portName)
- Чтение дан	ных входного порта с именем "portName". В случае отсутствия порта с
таким име	нем или несоответствия типа, возвращаемое значение может быть
невапилны	IM
повалидив	
woid	output bool(obar* portNamo bool t val)
void	output_bool(char* portName, bool_t val)
void void	output_bool(char* portName, bool_t val) output_float(char* portName, float val)
void void void	output_bool(char* portName, bool_t val) output_float(char* portName, float val) output_int(char* portName, int val)
void void void void	output_bool(char* portName, bool_t val) output_float(char* portName, float val) output_int(char* portName, int val) output_scalar(char* portName, scalar_t val)
void void void void void	output_bool(char* portName, bool_t val) output_float(char* portName, float val) output_int(char* portName, int val) output_scalar(char* portName, scalar_t val) output_point(char* portName, point_t* val)
void void void void void void void	output_bool(char* portName, bool_t val) output_float(char* portName, float val) output_int(char* portName, int val) output_scalar(char* portName, scalar_t val) output_point(char* portName, point_t* val) output_rect(char* portName, rect_t* val)
void void void void void void void void	output_bool(char* portName, bool_t val) output_float(char* portName, float val) output_int(char* portName, int val) output_scalar(char* portName, scalar_t val) output_point(char* portName, point_t* val) output_rect(char* portName, rect_t* val) output_segment(char* portName, segment_t* val)
void void void void void void void void	output_bool(char* portName, bool_t val) output_float(char* portName, float val) output_int(char* portName, int val) output_scalar(char* portName, scalar_t val) output_point(char* portName, point_t* val) output_rect(char* portName, rect_t* val) output_segment(char* portName, segment_t* val) output_line(char* portName, line_t* val)
void void void void void void void void	output_bool(char* portName, bool_t val) output_float(char* portName, float val) output_int(char* portName, int val) output_scalar(char* portName, scalar_t val) output_point(char* portName, point_t* val) output_rect(char* portName, rect_t* val) output_segment(char* portName, segment_t* val) output_line(char* portName, line_t* val) output_circle(char* portName, circle_t* val)
void void void void void void void void	output_bool(char* portName, bool_t val) output_float(char* portName, float val) output_int(char* portName, int val) output_scalar(char* portName, scalar_t val) output_point(char* portName, point_t* val) output_rect(char* portName, rect_t* val) output_segment(char* portName, segment_t* val) output_line(char* portName, line_t* val) output_circle(char* portName, circle_t* val) output_arc(char* portName, arc_t* val)

- Запись данных в выходной порт с именем "portName". В случае отсутствия порта с таким именем или несоответствия типа, записанное значение будет невалидным.

33.4. Примеры скрипто

34. Гарантийное обслуживание и ремонт

Гарантийный срок эксплуатации Лазерных сканеров РФ627 – 24 месяца со дня отгрузки, гарантийный срок хранения – 12 месяцев.

Заказчик теряет право на гарантийное обслуживание в случае:

- механических повреждений сканера в результате ударов, падения с высоты;
- повреждений сканера, вызванных самовольным вскрытием корпуса, некорректным подключением или отсутствием заземления.

35. Техническая поддержка

Техническая поддержка по использованию сканеров осуществляется на бесплатной основе и включает в себя техническую помощь, связанную с некорректной работой сканеров, и проблемами с настройками, разработку и исследование вариантов использования сканеров, обучение работе с программными средствами и библиотеками.

Техническая поддержка программного обеспечения, разработанного заказчиком, осуществляется на платной основе и включает возможность добавления новых функций в ПО.

Контакты технической поддержки:

- E-mail: support@riftek.com
- Skype: riftek_support

36. Изменения

Дата	Версия	Описание
16.11.2018	1.0.0	Исходный документ.
28.12.2018	1.0.1	 Добавлена возможность ручной регулировки выходной мощности лазера. Добавлено описание режима Recovery, раздел 28. Устранены мелкие неточности описания.
27.06.2019	1.0.2	 Добавлено одиннадцать новых моделей сканеров с диапазонами (Z) от 250 до 1165 мм, пар. 7.2. Добавлены настройки, расширяющие динамический диапазон сканеров, пар. 20.1. Добавлены функции фильтрации профиля (медианная и билатеральная), пар. 20.2. Добавлена функция выделения пика яркости на профиле, пар. 20.1.1. Добавлена передача в пакете яркости точек профиля, пар. 19.3. Добавлены режимы накопления профилей, их просмотра и сохранения, построения 3D и яркостных моделей, пар. 16.2., 20.3. Изменен формат файла прошивки, пар. 23.3. Устранены мелкие неточности описания.
06.07.2020	2.0.0.	 Полностью изменён внешний вид WEB-интерфейса. Добавлен режим нескольких экспозиций. Переработана система запуска измерений (triggering). Добавлена возможность просмотра осциллограмм сигналов на входах сканера. Добавлена возможность корректировки битых пикселей. Добавлены уведомления в WEB-интерфейсе о важных событиях в сканере. Описана структурная схема внутреннего модуля синхронизации сканера.
04.01.2021	2.1.0.	 Добавлено подробное описание вкладки Smart. Добавлено Приложение 3. "Габаритные и установочные размеры сканеров с опциями". Добавлено Приложение 4. "Web API".
16.04.2021	2.1.1.	 Добавлена аппроксимация профиля дугами. Уточнена терминология.
20.09.2021	2.1.2.	1. Обновлен раздел 11 "Ethernet-интерфейс и пользовательское ПО".

Дата	Версия	Описание
		2. В пар. 19.1 "Pre Processing. Настройки параметров выделения
		профилей" добавлено описание параметров "Intensity clipping" и "Peak
		width".
		3. Обновлен пар. 23.2.1 "Обновление и сохранение внутреннего ПО".
		4. Обновлен пар. 24.1.3 "Вкладка Profile Approximation".
		5. Добавлен новый параграф 24.2.1.3 "Уточнение аппроксимирующих
		отрезков и точек их пересечения".
		6. Добавлено описание функции "Scalar filtering" в пар. 24.3.2.3 "Раздел
		Math functions".
		7. Добавлен пар. 24.3.2.2. "Раздел Welding".
		8. Добавлено описание смарт-блока "template detector", пар. 24.3.2.3.
		9. Добавлено описание смарт-блока "robot protocol HND1", пар. 24.3.2.7.
		10. Добавлено Приложение 5. Протокол HND1, версия 1.0.
		11. Добавлено Приложение 6. Смарт-блок "template detector" и редактор
		шаблонов.
		12. Добавлено Приложение 7. Смарт-блок "C-script".
		13. Обновлены некоторые скриншоты и устранены мелкие неточности
		описания.