

3D ЛАЗЕРНАЯ СКАНИРУЮЩАЯ СИСТЕМА ДЛЯ КОНТРОЛЯ ФОРМЫ КОВАНЫХ ОСЕЙ

Серия РФ096-20/143-63/180-550

Руководство по эксплуатации

Логойский тракт, 22, г. Минск 220090, Республика Беларусь тел/факс: +375 17 357 36 57 info@riftek.com www.riftek.com

Содержание

1.	Мерь	ы предосторожности	.3
2.	Евро	пейское соответствие	3
3.	Лазе	рная безопасность	.3
4.	Назн	ачение	.3
5.	Устр	ойство и принцип работы	.4
6.	Осно	вные технические данные	5
7.	Комп	ілектность поставки	6
8.	Прим	иер обозначения при заказе	6
9.	Подк	лючение	6
10.	Hac	тройка сети	6
11.	Исп	юльзование по назначению	7
1	1.1.	Подготовка к использованию	7
1	1.2.	Установка изделия	7
12.	Сер	висная программа	7
1	2.1.	Назначение	7
1	2.2.	Системные требования	7
1	2.3.	Инсталляционный пакет ПО	7
1	2.4.	Установка и настройка ПО	8
1	2.5.	Запуск сервисной программы 1	2
1	2.6.	Главное окно сервисной программы 1	2
1	2.7.	Подключение и отключение системы 1	3
1	2.8.	Перемещение каретки в начальную позицию 1	4
1	2.9.	Калибровка системы 1	4
1	2.10.	Сканирование изделия 1	6
1	2.11.	Просмотр данных 1	7
1	2.12.	Сохранение, чтение и экспорт данных 1	9
13.	Tex	ническая поддержка1	9
14.	Гар	антийное обслуживание и ремонт1	9
15.	Изм	енения1	9

2

1. Меры предосторожности

- Используйте напряжение питания и интерфейсы, указанные в спецификации на систему.
- При подсоединении/отсоединении кабелей питание системы должно быть отключено.
- Не используйте систему вблизи мощных источников света.

2. Европейское соответствие

Система разработана для использования в промышленности и соответствует следующим Директивам:

- Directive 2014/30/EU (Электромагнитная совместимость).
- Directive 2011/65/EU, "RoHS" category 9 (Ограничение использования опасных и вредных веществ в электрооборудовании и электронном оборудовании).

3. Лазерная безопасность

В системе используются полупроводниковые лазеры с непрерывным излучением и длиной волны 660 нм. Максимальная выходная мощность – 1 мВт. Система относится к классу 2 лазерной безопасности в соответствии с IEC/EN 60825-1:2014. На корпусе размещена предупреждающая этикетка:

При работе с системой необходимо соблюдать следующие меры безопасности:

- не направляйте лазерный луч на людей;
- не разбирайте лазерный датчик;
- не смотрите на лазерный луч.

4. Назначение

Система предназначена для измерения геометрических параметров заготовок осей ходовой части сельскохозяйственной техники и может быть использована также для измерения труб, полых валов и аналогичных изделий.

5. Устройство и принцип работы

Работа системы основана на принципе сканирования внутренней и внешней поверхностей изделия вращающимся триангуляционными лазерными датчиками.

Система содержит раму 1, на которой установлены линейные направляющие 2, 3, несущие каретку 4. На каретке 4 размещен модуль вращения 5 со стержнями 6 и 7. Стержень 6 размещен по оси модуля вращения 5, а стержень 7 - с радиальным сдвигом. Стержни 6 и 7 несут триангуляционные лазерные датчики 8, 9. Система содержит также калибровочный шаблон 10, размещенный на поворотной балке 11. На торцевой панели системы расположены: разъем для подключения питания 12, разъемы интерфейсов Ethernet 13 и RS485 14, кнопка включения питания 15. На противоположной панели располагается отверстие 17 для установки измеряемой детали. Кнопка аварийной остановки системы - 16.

Рисунок 1

Компоновка лазерых датчиков показана на рисунке 2, где 18 - ось вращения системы, красным цветом показаны рабочие диапазоны датчиков. Особенностью лазерной головки 8 является то, что, с целью достижения требуемой точности в широком диапазоне измерения, рабочий диапазон разбит на два поддиапазона и головка содержит два триангуляционных датчика с единым лазерным лучом.

Рисунок 2

Положение детали при сканировании показано на рисунке 3, где 19 - измеряемая деталь.

Рисунок 3

Система работает следующим образом.

Измеряемая деталь устанавливается так, чтобы ось детали совпадала с осью вращения датчиков. По команде оператора лазерные датчики приводятся во вращение и перемещаются в направлении детали. Датчик 8 измеряет расстояние до внутренней поверхности, а 9 - до внешней поверхности детали синхронно с углом поворота.

Диапазон перемещения и шаг измеряемых поперечных сечений задаются программно. Полученные радиальные координаты поверхностей передаются в компьютер для расчета требуемых геометрических параметров.

Видеодемонстрацию работы системы можно посмотреть здесь:

https://www.youtube.com/watch?v=18CbkpLKki0

6. Основные технические данные

Параметр	Значение
Диапазон измерения внутреннего диаметра, мм	20143
Погрешность измерения внутреннего диаметра, мм	±0,05
Диапазон измерения внешнего диаметра, мм	63180
Погрешность измерения внешнего диаметра, мм	±0,1
Пространственное разрешение, точек/оборот	2048
Диапазон глубины сканирования, мм	0550 (программируемый параметр)
Минимальное расстояние между измеряемыми сечениями, мм	0,5 (программируемый параметр)
Погрешность линейного перемещения, мм	±0,05
Частота выборки лазерного датчика, макс, Гц	9400
Источник излучения	красный полупроводниковый лазер, длина волны 660 нм
Выходная мощность, мВт	<1
Класс лазерной безопасности	2 (IEC60825-1)
Интерфейс	Ethernet, RS485
Напряжение питания, В	220
Вес, кг	77

Примечание: параметры системы могут быть изменены под конкретную задачу.

7. Комплектность поставки

Обозначение	Наименование	Количество
РФ015.00.000	Система контроля геометрических параметров	1
РФ333.90.009	Интерфейсный кабель Ethernet EL0401 (RJ45-RJ45)	1
РФ058.90.011	Интерфейсный кабель RS485 EL1001 (DB-9M-DB- 9F)	1
РФ333.80.012-001	Адаптер интерфейса RS485-USB EL0101	1
	Кабель питания 220В 1,8 м (SCZ-1 BM)	1
	Руководство по эксплуатации	1

8. Пример обозначения при заказе

RF096-IDmin/IDmax-ODmin/ODmax-L

Символ	Описание
IDmin/IDmax	Диапазон измеряемых внутренних диаметров, мм.
ODmin/ODmax	Диапазон внешних диаметров, мм.
L	Диапазон глубины сканирования, мм.

Примечание: погрешность измерения параметров оговаривается отдельно.

9. Подключение

- Подключите систему к персональному компьютеру с помощью двух кабелей Ethernet и USB (через преобразователь USB-RS485).
- Подключите систему к сети 220 В с помощью кабеля питания.

Ethernet interface connector (13)	Ethemet interface cable (16)	RJ45	PC
Power connector (12)	Power cable (15)	~220V	AC
Power connector (12)	Power cable (15)	~220	AC

10. Настройка сети

Система поставляется со следующей сетевой конфигурацией:

• ІР-адрес: 192.168.0.3.

Необходимо настроить сетевую карту компьютера в следующем адресном пространстве: 192.168.0.Х.

11. Использование по назначению

11.1. Подготовка к использованию

- Проверьте состояние выходного окна лазерных датчиков и, при необходимости, протрите его мягкой тканью.
- Поверните лазерные датчики вручную и проверьте плавность хода.
- Проверьте правильность подключения кабелей.
- Проверьте правильность сетевых настроек.
- Включите систему.
- Запустите сервисную программу.
- Выполните процедуру калибровки (перед первым использованием).

После выполнения всех шагов, перечисленных выше, оператор может приступать к процедуре измерения.

11.2. Установка изделия

Изделие устанавливается в призмы, отъюстированные по отношению к базам системы таким образом, чтобы ось изделия совпадала с осью системы вращения лазерных датчиков.

12. Сервисная программа

12.1. Назначение

Сервисная программа предназначена для:

- управления системой;
- калибровки системы;
- сканирования внутренней и наружной поверхностей изделий;
- формирования 3D-модели на основе данных, полученных при сканировании;
- визуального просмотра 3D-модели;
- сравнения полученной модели с идеальной и расчета величин отклонения формы;
- сохранения, чтения и экспорта данных.

12.2. Системные требования

Операционная система	Windows 10 и выше
ОЗУ	8 ГБ и более
Разрешение монитора	1280х1024 и выше
Поддержка OpenGL	Версия 4.0 и выше
USB	Свободный слот USB
Ethernet	Свободный слот Gigabit Ethernet

12.3. Инсталляционный пакет ПО

Инсталляционный пакет состоит из следующих файлов:

RF09615_Demo_Win32_v1_2_2_2021_12_24.zip	Сервисная программа для управления системой
CDM v2.12.36.4 WHQL Certified.zip	FTDI-драйвер виртуального COM-порта

12.4. Установка и настройка ПО

Необходимо выполнить следующие действия:

- 1. Установите сервисную программу. Для этого распакуйте архив FTDIдрайвера **RF09615_Demo_Win32_v1_2_2021_12_24.zip** в рабочую папку.
- 2. Настройте сетевой интерфейс. Для этого установите IP-адрес сетевого адаптера, к которому подключена система, в значение 192.168.0.XXX, где XXX = 1, 2, 4, 5,...254.
- 3. Настройте виртуальный СОМ-порт. Для этого:
 - а. Вставьте адаптер USB-RS485 в свободный слот USB.
 - b. Распакуйте архив CDM v2.12.36.4 WHQL Certified.zip во временную папку.
 - с. Запустите Диспетчер устройств (Device Manager).
 - d. Кликните правой кнопкой мыши на пункте Other Devices > USB Serial Port и выберите пункт меню Update driver.

e. В появившемся диалоге выберите пункт Browse my computer for drivers.

 \times

This list will show available drivers compatible with the device, and all drivers in the

→ Let me pick from a list of available drivers on my computer

g. После завершения установки FTDI-драйвера нажмите кнопку Close.

Next

Cancel

same category as the device.

←

Vindows has successfully updated your drivers
Windows has finished installing the drivers for this device:
USB Serial Port

h. Нажмите правой кнопкой мыши на соответствующий порт в группе **Ports (COM & LPT)** и выберите пункт меню **Properties**.

i. В появившемся диалоге перейдите на вкладку **Port Settings** и нажмите кнопку **Advanced**.

USB Serial Port (COM5) Properties	×
General Port Settings Driver Details Events	
Bits per second: 9600 V	
Data bits: 8 🗸 🗸	
Parity: None ~	
Stop bits: 1	
Flow control: None ~	
Advanced Restore Defaults	1
OK Cance	!

j. Установите значение Latency Timer равным 1, параметры Receive и Transmit равными 4096, и нажмите кнопку OK.

Advanced Settings for COM5		?	×	
COM Port Number: COM5		OK		
USB Transfer Sizes	Cancel			
Select lower settings to correct performance problems at low ba	ud rates.	Defeulte		
Select higher settings for faster performance.		Defaults		
Receive (Bytes): 4096 ~				
Transmit (Bytes):				
BM Options	Miscellaneous Options			
Select lower settings to correct response problems.	Serial Enumerator		\checkmark	
	Serial Printer			
Latency Timer (msec):	Cancel If Power Off			
	Event On Surprise Removal			
Timeouts	Set RTS On Close			
	Disable Modem Ctrl At Startup			
Minimum Read Timeout (msec): 0 ~	Enable Selective Suspend			
Minimum Write Timeout (msec): 0 ~	Selective Suspend Idle Timeout (secs):	5	~	

k. Закройте диалог USB Serial port properties, нажав на кнопку OK.

USB Seria	l Port (COM5)	Proper	ties			×
General	Port Settings	Driver	Details	Events		
		<u>B</u> its pe	er second	9600	~	
			<u>D</u> ata bits	: 8	\sim	
			<u>P</u> arity	None	~	
			<u>S</u> top bits	: 1	~	
		Flo	w control	None	~	
			A	dvanced	<u>R</u> estore Defaults	
				ОК	Cancel	

I. Закройте Диспетчер устройств.

12.5. Запуск сервисной программы

Запустите файл RF09615_Demo.exe.

12.6. Главное окно сервисной программы

Все функции сервисной программы доступны из главного окна с помощью одного или двух кликов мыши.

Главное окно разделено на следующие группы:

- 1. UART. Подключение и отключение сервисной программы к системе.
- 2. Parameters. Отображение основных параметров системы.
- 3. Motion. Ручное управление системой линейного перемещения.
- 4. Calibration. Калибровка системы.
- 5. Measure. Задание параметров сканирования и управление процессом.
- 6. Session. Сохранение, загрузка и экспорт данных сканирования в различные форматы.
- 7. **Navigation panel**. Отображение списка выполненных измерений и выбор отдельного измерения для детального просмотра.
- 8. Cross section. Отображение поперечного сечения объекта в заданной позиции.
- 9. Longitudinal section. Отображение продольного сечения объекта заданной плоскостью.

10. **3D View**. Отображение отсканированной 3D модели.

Команды управления активируются нажатием на соответствующую кнопку. Некоторые кнопки защищены от случайного нажатия. Перед тем как нажать на такую кнопку, нужно снять защиту. В качестве примера на рисунке ниже изображена кнопка **Disconnect** с не снятой защитой (а) и со снятой защитой (b).

Sec. 19				
	Disconnect		Disconnect	
		b)		

12.7. Подключение и отключение системы

Для установки соединения сервисной программы с системой выполните следующие действия:

- 1. Подсоедините кабели сетевого и последовательного интерфейсов к соответствующим разъемам на корпусе системы и ПК.
- 2. Включите питание системы.
- 3. Запустите исполняемый файл RF09615_Demo.exe.
- 4. В панели UART выберите имя соответствующего СОМ-порта.

UART	
Connect	COM1 ∨
	COM1
	COM3
Parameters	COM4

5. Нажмите кнопку Connect.

Для отключения сервисной программы от системы выполните следующие действия:

1. Снимите защиту и нажмите кнопку **Disconnect**.

UAR	т	
	Disconnect	

- 2. Выключите питание системы.
- 3. При необходимости отсоедините кабели сетевого и последовательного интерфейсов.

12.8. Перемещение каретки в начальную позицию

После завершения калибровки или сканирования, сервисная программа автоматически перемещает каретку системы линейного перемещения в начальную позицию. В некоторых случаях, например, при аварийном отключении внешнего питания, этого не происходит. Поскольку управляющие алгоритмы исключают возможность самопроизвольного движения частей системы, пользователь должен сформировать команду на перемещение каретки в начальную позицию. Для этого выполните следующие действия:

- 1. Подключите сервисную программу к системе (см. <u>Подключение и</u> отключение системы).
- 2. Снимите защиту и нажмите кнопку Move to Initial Position.

12.9. Калибровка системы

Калибровка системы должна быть выполнена перед первым использованием системы.

Рекомендуется калибровать систему периодически, а также после долгого хранения.

Если система не калибрована, то в группе **Parameters** отображается надпись красного цвета **Not calibrated** (a).

Если система калибрована, то в группе **Parameters** отображается надпись зеленого цвета **Calibrated** (b).

Parameters			Parameters	
Not calibrated!			Calibrated	
General			General	
Model:	RF015.10		Model:	RF015.10
Serial No:	106		Serial No:	106
Sensor 1			Sensor 1	
Model:	20/120		Model:	20/120
Serial No:	30628		Serial No:	30628
Sensor 2			Sensor 2	
Model:	22/67		Model:	22/67
Serial No:	30629		Serial No:	30629
Sensor 3			Sensor 3	
Model:	3/24		Model:	3/24
Serial No:	30630	b)	Serial No:	30630

Для калибровки системы выполните следующие действия:

- 1. Подключите сервисную программу к системе (см. <u>Подключение и</u> <u>отключение системы</u>).
- 2. Убедитесь в том, что система линейного перемещения находится в начальной позиции. Если это не так, то переместите систему в начальную позицию (см. <u>Перемещение в начальную позицию</u>).
- 3. Установите калибровочное кольцо в рабочее положение, как показано на рисунке ниже.

Рисунок 4

4. Проверьте и, при необходимости, измените величины эталонных диаметров и погрешности калибровки, разблокируйте и нажмите кнопку Calibrate.

Calibration	
Outer diameter, mm	135,022 🜲
Inner far diameter, mm	85,059 ≑
Inner near diameter, mm	45,062 🜩
Tolerance, mm	0,05 ≑
Calibrate	

- 5. После нажатия на кнопку **Calibrate** система включает датчики и совершает несколько оборотов. Если калибровка завершена успешно, то в группе **Parameters** появляется зеленая надпись **Calibrated**.
- 6. Переместите калибровочное кольцо в парковочное положение, как показано на рисунке ниже.

Рисунок 5

12.10. Сканирование изделия

Для сканирования изделия выполните следующие действия:

- 1. Подключите сервисную программу к системе (см. <u>Подключение и</u> отключение системы).
- 2. Убедитесь в том, что каретка находится в начальной позиции (см. <u>Перемещение каретки в начальную позицию</u>).
- 3. При необходимости откалибруйте систему (см. Калибровка системы).
- 4. Убедитесь в том, что калибровочное кольцо запарковано (см. Калибровка системы).
- 5. Если необходимо продолжить сохраненную ранее сессию, то загрузите ее (см. <u>Сохранение, чтение и экспорт данных</u>).
- 6. Установите объект для сканирования. Убедитесь в том, что касание подвижных частей системы во время сканирования исключено.
- 7. Введите параметры сканирования, разблокируйте и нажмите кнопку **Start**.

Measure	
Comment	
Scan 1. Part 2001.	
Begin position, mm	250,0 🗘
End position, mm 400,0	
Step, mm	0,5 ≑
Start	

8. После нажатия на кнопку **Start** система включает датчики и производит сканирование объекта в соответствии с введенными параметрами. Сервисная программа отображает ход сканирования в графической части главного окна.

n Rf09615_Demo		- a x
UART	Session	
D Nevernet	Save	o ☑ Outer surface
Laconnect	Load	
Parameters	- due	
Calibrated	Uca	
	Export to CSV	
General	Export to STL	
Model: RP015.10 Serial No. 105	T N N	
Sensor 1	lime User comment	
Model: 20/120		
Serial No: 30628		270
Sensor 2		
Prodet: 22/07 Serial No: 30529		
Sensor 3		
Model: 3/24		
Serial No: 30630		240
Motion		
Move to Initial Position		
Calibration		210 201 159
Outer diameter, mm 135,022 🕏		180
Inner far diameter, mm 85,039 🗘		
Inner near diameter, mm 45,062 🕏		
Tolerance, mm 0,05 🗢		23 240 273 340 345 354 315 340 75
Calbrate		
Measure		30
Abort		
Measurements in progress		
		-25
		⁷² Z50 275 300 375 390 375 400 75

9. После того как сканирование завершено сервисная программа добавляет данные измерений в текущую сессию. В навигационной панели появляется соответствующая строка, содержащая дату и время сканирования, а также комментарий пользователя.

Time	User comment
2022-01- 4 11:37:48	Scan 1. Part 2000.
2022-01- 4 11:38:08	Scan 2. Part 2000.
2022-01- 4 11:38:25	Scan 3. Part 2000.
2022-01- 4 11:41:23	Scan 1. Part 2001.

- 10. При необходимости выполните новое сканирование, повторив шаги 6-9.
- 11. После завершения всех измерений сохраните сессию в файл (см. <u>Сохранение, чтение и экспорт данных</u>).
- 12. Извлеките сканируемый объект. Отключите сервисную программу от системы.

12.11. Просмотр данных

Панель навигации отображает список всех измерений, сделанных в течение текущей сесии.

Графическая часть главного окна отображает 3D-модель отсканированного объекта в трех видах (см. рисунок ниже):

- 1. Продольное сечение.
- 2. Поперечное сечение.
- 3. 3D-вид.

Сервисная программа предоставляет следующие возможности при просмотре данных сканирования:

- 1. Для выбора определенного измерения кликните правой кнопкой мыши по соответствующей строке в панели навигации.
- 2. Для просмотра фрагмента 3D-модели, ограниченного двумя сечениями, в окне продольного разреза с помощью мыши переместите левую и правую границы отображения 3D-модели (**3D model display boundaries**) в желаемые положения.
- 3. Для увеличения масштаба отображения 3D-модели, наведите курсор мыши на окно 3D-вида и вращайте колесо мыши "от себя".
- 4. Для уменьшения масштаба отображения 3D-модели, наведите курсор мыши на окно 3D-вида и вращайте колесо мыши "на себя".
- 5. Для изменения угла просмотра 3D-модели, наведите курсор мыши на окно 3D-вида, нажмите правую кнопку и перемещайте курсор мыши до тех пор, пока модель не будет повернута на требуемый угол.
- 6. Для просмотра поперечного сечения объекта в заданной позиции в окне продольного сечения переместите линию поперечного сечения (**Cross section line**) с помощью курсора мыши в требуемое положение.
- 7. Для просмотра продольного сечения объекта вдоль определенной плоскости в окне поперечного сечения поверните линию продольного сечения (Longitudinal section line) с помощью курсора мыши на требуемый угол.
- 8. Используйте переключатели в верхней части окна 3D-вида для того, чтобы выбрать какие поверхности объекта требуется наблюдать (только внешнюю, только внутреннюю или обе сразу, см. скриншоты ниже).

🖸 Outer surface 🗹 Inner surface 🗹 Points

12.12. Сохранение, чтение и экспорт данных

Группа кнопок **Session** (см. рисунок ниже) обеспечивает возможность управления данными сканирования.

Session	
	Save
	Load
	Clear
E	xport to CSV
E	export to STL

- 1. Для сохранения сессии, нажмите кнопку **Save** и выберите в появившемся диалоге путь к файлу сессии. Сервисная программа сохраняет данные сессии в бинарный файл **rfs**.
- 2. Для просмотра сохраненной сессии или для продолжения измерений разблокируйте и нажмите кнопку **Load**, выберите в появившемся диалоге путь к требуему файлу.
- 3. Для удаления всех измерений в текущей сессии разблокируйте и нажмите кнопку **Clear**. Будьте осторожны, удаленные данные невозможно будет восстановить, если они не были сохранены в файл.
- 4. Для экспорта текущего измерения в файл формата CSV, нажмите кнопку **Export to CSV** и выберите в появившемся диалоге путь к файлу.
- 5. Для экспорта текущего измерения в файл формата STL, нажмите кнопку **Export to STL** и выберите в появившемся диалоге путь к файлу. Обратите внимание, что внешняя поверхность объекта будет сохранена в файл _outer.stl, а внутренняя поверхность - в файл _inner.stl.

13. Техническая поддержка

Техническая поддержка, связанная с некорректной работой системы и проблемами с настройками, осуществляется бесплатно компанией РИФТЭК. Запросы по технической поддержке следует направлять на адрес <u>support@riftek.com</u> или по телефону +375-17-3573657.

14. Гарантийное обслуживание и ремонт

Гарантийный срок эксплуатации Системы – 24 месяца со дня ввода в эксплуатацию, гарантийный срок хранения – 12 месяцев.

15. Изменения

Дата	Версия	Описание	
21.01.2022	1.0.0	Исходный документ.	